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The present work studies the effects of strained membranes. An analytical framework has been
established to predict self-rolling curvatures of strained bilayer membranes containing heterogeneous
material elements. The accuracy of the framework is validated through molecular dynamics (MD)
simulations on the heterogeneous CdTe,S;_,/CdTe bilayer system. Moreover, numerical simulations
using finite-element modeling (FEM) have been performed to examine the role of heterogeneous

elements in the complex helical rolling. It has been demonstrated that both the rolling direction and
rollup curvature can be predictively controlled by modulating the material heterogeneity and layer
thickness. The present study points to a new pathway towards predictive design and tuning of complex
3D structures based on strained membranes through incorporation of heterogeneous elements.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

The strain driven self-rolling of bi- and multi-layer strained
membranes [1-8] enables programmable shape transformation,
and subsequently controllable tuning of properties and function-
alities [9-15], providing an attractive engineering strategy for di-
verse applications including elecromechanical/micro
-electromechanical systems (NEMS/MEMS) [16], sensors [17,18],
microrobotics [19,20], drug delivery [21,22], and optoelectronics
[23-26] as well as artificial biomimetic structures [27-35].

A central aspect in self-rolling is the control of the driving
force, namely the mechanical strain within the layered system.
Recent technological developments of lithography-based proce-
dures including photolithography [36], scanning lithography [37],
soft lithography [38], and nanocontact printing [39] enable the
incorporation of more complex compositional and structural het-
erogeneities within multilayered membranes to induce inhomo-
geneous straining, providing additional design freedom in en-
gineering the mechanical strain within the membrane, and in
turn the possibility to achieve a higher level of manipulation
over the rollup geometry [40-44]. For instance, alternative strips
with varied chemical compositions have been utilized to con-
struct the responsive material with local modulation of internal
stress that enables controllable multiple 3D geometry transfor-
mations from self-bending to self-twisting [45]. Aligned carbon

* Corresponding author.
E-mail address: jun.song2@mcgill.ca (J. Song).

https://doi.org/10.1016/j.em1.2019.100451
2352-4316/© 2019 Elsevier Ltd. All rights reserved.

nanotubes (CNTs) in multiple directions have been reported to
be embedded into the composite polymer membrane actuators
to realize the accurate control of the self-rolling process and
thus endow programmable and anisotropic actuation [46]. One of
the most significant features offered by those inhomogeneously
strained structures is the directional self-rolling behaviors origi-
nating from anisotropic driving forces [47], greatly enriching the
flexibility and tunability in 3D architectures constructed from
predefined flat geometries.

The added compositional and structural heterogeneities, de-
spite the benefits, also bring along challenges for quantitative
assessment of the rolling process. The theoretical models [47-
49] available demonstrate the ability of design helical ribbons
through compositional inhomogeneity but fail to analytically
evaluate the two unequal principal curvatures of strained bilayer
membranes induced structural and compositional inhomogene-
ity. Moreover, experimental measurements are still needed to
obtain those values for the precise design of various 3D mor-
phologies [47]. As such, there is need of predictive and quan-
titative models that account for material heterogeneity in the
strained membranes.

This present study aims to address the afore-mentioned
knowledge deficit. An analytical model has been established to
predict self-rolling curvatures of strained bilayer membranes
incorporating heterogeneous elements. Molecular dynamics (MD)
simulations, on the heterogeneous CdTe,S;_/CdTe bilayer sys-
tem, were performed to directly examine the rolling behaviors
to validate the analytical model. Moreover, numerical simulations
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using finite-element modeling (FEM) were performed to examine
the role of heterogeneous elements in the complex helical rolling,
and to further demonstrate the application of the analytical
model. In the end, a summary was presented and the implication
of our results to the design of complex 3D structures based on
strained membranes was discussed.

2. Methodology
2.1. Analytical formulation

Fig. 1 schematically illustrates the representative strained bi-

layer membrane, where a rectangular strained bilayer membrane
has been considered with dimensions L in length (x; direction)
and W in width (x, direction), comprising an mixed active layer
with aligned heterogeneous elements (top layer) and a passive
matrix layer (bottom layer) bonded together. The lattice constants
of matrix and two heterogeneous materials are expressed by as,
ar1 and ay,, respectively. Here subscripts s, f1 and f2 denote the
matrix in red and two types of heterogeneous materials in yellow
and blue, respectively, and we continue to use this notation in the
following text.
The two types of heterogeneous materials, and matrix are re-
spectively of elastic constants (Ciir1, Ciof1, Cagr1), (Ciir2, Ciopas
Casr2), (Ciis, Cias, Cass), and thicknesses (hy1 = hgy, hg), where
both materials are assumed to be cubic symmetrical. Then, the
elastic modulus of mixed top layer with the subscript fx could
be expressed using a weighted mean as

Cirx =F - Ciif1 + Cyp2 - (1 = F) (1
Ciorx = F - Cipp1 + Crip2 - (1 = F) (2)
Cagrx = F - Cyar1 + Crip2 - (1 = F) (3)

where F is the volume fraction of heterogeneous elements. The
variation of internal strain induced by aligned heterogeneous ele-
ments is systematically examined using continuum elastic theory.
The deformation process is schematically illustrated in Fig. 1(b).
The heterogeneous elements, bonded together and adhered to
the matrix, stretch or contract, both longitudinally (along x;)
and laterally (along x;), to match the matrix. Here it is assumed
that the matrix and heterogeneous elements deform in a way to
ensure an even outer surface in the equilibrium state. The in plane
anisotropic mismatch strains (g, £ ), parallel and perpendicular
to the direction of aligned heterogeneous elements can then be
determined as the following, based on the lattice constants of
matrix and heterogeneous material (see Eqs. (4) and (5) given in
Box . with coefficients M and N given by

Cizr10s1 (C121f2 - Clzzfz) (afZ - afl) (1-F)F
ChysCunpaaraF — Cuupr (Chyy = Chya ) (F = D a1 — CuypaClypyaaF

(6)

M =

Ciar2052 (C121f1 - C122f1) (ﬂfz - afl) (I1-F)F
C121f1C11fZaf2F — G (C121f2 - C122f2) (F—T1as — C11f2C122f1af2F
(7)
For the sake of simplicity and without loss the generality, we
assume one type of the heterogeneous elements are of the same
material as the substrate, colored in yellow and red in Fig. 1,
respectively, i.e., ar; = a5, Ci152 = Ci1s, Ciop2 = Cias, Cagrz = Cags.
As to be shown below, analytical solutions are possible under this

assumption.
Then Eqs. (4)-(7) can then be further reduced as:

CuisF (Chyp = Chy) (a5 — @)
CinsF — (Chys = Cie) (F = 1) Cryy = Gy CuusF)

N =

& = (8)
as (Clzlf

o 1
as+ (¢, —af)F—M +N
B Crarty (Chys — Ciy) (s —ay) A= P)F
 Cuisa(Cly — Chp)F — Cuyp (Cog — Chy) (F — gy
N = Ciass (Clzlf - C122f) (as —ar) 1 —F)F (11)
Cﬂsas(c121f - C122f)F — Gy (Clzls - C1zzs) (F=1a

The relations of strain tensor &,p and displacement fields
u(uq, Uy, us) of the deformed membranes are evaluated in a given
coordinate (x1, X2, x3) based on the Von-Karman nonlinear theory
[50,51],

1 [/ du, N dug
Eap = =
) 0xg  0Xy

£ =

d d 2
ous ﬂ) — X3 us (12)

0xg  0Xq 0Xx,0Xg

where the Greek subscripts & and 8 can have values 1 or 2. An
approximated displacement field [50,52-54], could be assumed
as

3 3
w (LX) =Y > A, (13)

i—0 j=0
3 3
Uy (X1, X2) = Z ZBUXQXI ) (14)
i—0 j=0
1 2 2
U= (ax; + bx3) (15)

where (A, By, a, and b) are to-be-determined coefficients mini-
mizing the potential energy U (see below). Here the three-order
polynomial approximation of in-plane displacement field was
proved to be sufficient to provide an accurate estimation for the
self-rolling behaviors of strained bilayer membranes with inho-
mogeneous elements. From the displacement fields, the curvature
fields of the deformed membranes can then be obtained:
321,13 82U3

~ and Koy = 2

0x; x5

The total potential energy U of the bilayer membrane system
follows by integrating the strain energy over the total volume as

1 1
U= f//v <5Cgk,8,§8£, + Ecﬁ,sg.xs@ dv (17)

where, Cgk, and C{;,‘d are the stiffness tensors for the matrix and
the materials in the heterogeneous top layer, respectively. The
equilibrium configurations can be obtained via minimization of
the total potential energy expression based on the trial in-plane
displacement functions and transverse displacement shape func-
tions. It is worth noting that in this quasi-static process, there
can be multi-stable equilibrium states, including the situations
with two unequal final curvatures and with one principal curva-
ture, as demonstrated by numerical simulations in our previous
study [55]. We found that the closed analytical solutions are only
available for the case of one principal curvature, as shown in Egs.
C121f1_C12f1‘C12f1
Gt

2 2
CF, = G2 (Cn=Con) o G5 ynq s, = Sz Crs=Ciz)
Cr1f1 ' Ci1s Ci1s :

K11 = (16)

(18) and (19) which is given in Box II, where CF; =

2.2. Molecular dynamics simulations

To validate the curvature predictions from the continuum
model in Section 2.1 and directly visualize the self-rolling behav-
iors, we performed molecular dynamics (MD) simulations imple-
mented using the LAMMPS package [56]. Here in this study the
CdTe,S;_,/CdTe bilayer is selected as the representative model
system, with CdTe,S;_, and CdTe denoting the materials for the
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Fig. 1. (a) Exaggerated schematic illustration of rectangular strained bilayer membrane with aligned heterogeneous elements colored in the blue and yellow. (b) The
matrix and heterogeneous material in the strain-free state prior to being bonded together. (c) The heterogeneous material is stretched and bonded with the matrix
and two materials contract the same amount and obtain even outer surface in the equilibrium state. Note that in the study heterogeneous elements may align along
either x; or x,, although here only the case of alignment along x, is illustrated. (For interpretation of the references to color in this figure legend, the reader is

referred to the web version of this article.)
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Box I
1 (CF} — CF\CF}) h? + 5h (CF7CSy — 2CF1CFyCS; — 2CF;CSy) hi + 6hZ (CFECSy + (5CST — 3CS3) CFy — CF;CSy) by
ki 6hs (hs + hy) hy ((CFZ — CF) (CS1&y + CSe1) hy + hy (CS7 — CSZ) (CFre) + CFael ) (18)
+4h§ (CFICSy + (3CS? — 3CS3) CFy — CF3CS1) h? 4 5h¢ ((CS7 — 2CS3) CFy — 2CFaCS1CS,) hy + (CS7 — CS1CS3) he
6hs (hs + hy) hy ((CF7 — CFZ) (CS1ey + CSae1) hy + h (CS? — CSZ) (CFrey + CFael))
1 (CF} — CFyCF3) h? + 5hs (CF7CSy — 2CF1CFyCS; — 2CF;CS1) hf + 6h? (CFICSy + (3CST — 3CS3) CFy — CF;CSy) b
ko 6hs (hs + hy) hy ((CFZ — CFF) (CS1£2 + CSa¢y) hy + hy (CST — CS3) (CFie2 + Chaey)))
4h3 (CF7CS1 + (3CS7 — 3CS3) CFy — CF3CS1) hf + 5h ((CST — 2CS3) CFy — 2CFyCS1CSy) y + (CSF — CS1CS3) b3
6hs (hs + hy) hy ((CFZ — CFF) (CS1e1 + CSaey) hy + hy (CS7 — CSZ) (CFieL + CFagy))
(19)

Box II.

top mixed layer and substrate layer respectively. This choice is
based on the availability of interatomic potential [57], and the
practical implication as the quasi-two-dimensional morphologies
of CdTe,S;_x and CdTe are promising building blocks for tun-
able optoelectronic devices [58,59]. The interatomic interactions
of the Cd-S-Te ternary system are described by the Stillinger-
Weber potential [57], which well predicts the lattice parameter,
elastic constants and a wide variety of defect properties for bulk
and multilayered compounds, and has been previously applied
to study core/shell structured quantum dots [60], misfit dislo-
cations [61], and heterogeneous film growth [62]. The lattice
constants and elastic constants of CdS and CdTe, predicted by the
interatomic potential, are listed in Table 1. The effective Young’s

moduli, evaluated based on the Voigt average [63], are also listed
in Table 1.

The initial atomistic models and the corresponding MD sim-
ulated rolling processes are illustrated in Fig. 2(a-d), where x;
(perpendicular to the plane of paper), x,, and x3 are set to be
aligned with [100], [010], and [001] respectively, and the peri-
odic boundary condition is applied to x; direction. The supercell
dimensions along x; and x; are approximately 28 nm and 110 nm
respectively. As illustrated in Fig. 2(a-b), the top layer comprises
of alternating CdS and CdTe strips, along either the longitudinal
or lateral direction. For each strip type (CdS or CdTe), the strips
are of the same strip width, and spatial strip density, defined
as # of strips per length along the direction perpendicular to
the strip, is maintained to be sufficient (>0.5/nm), in order to
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Fig. 2. Representative self-rolling models of CdTe,S;_,/CdTe of volume fraction 0.6 with alternatingly distributed strips in the top layer aligned along the (a)
longitudinal and (b) lateral directions, while (c) and (d) represent the corresponding equilibrium rollup geometries. The MD simulated and model predicted rollup
diameters as functions of the volume fraction (F) of the active material CdS for two representative sets of layer thicknesses, i.e., (hs/hs) being (3.24/3.24) and

(4.54/3.24) nm are shown in (e) and (f) respectively.

ensure adequate level of uniformity in material responses for the
mixed top layer (see Supplementary Information for details). The
CdTe,S1_,/CdTe bilayer systems of two sample set of thicknesses,
i.e,, (hy/hs) being (3.24/3.24) and (3.24/4.54) nm were considered
to investigate the thickness effect on the rollup. In MD simula-
tions, the lattice of the top layer was first stretched to match that
of the matrix CdTe. Then the heterogeneous strained bilayer was
relaxed via energy minimization [64] to obtain the equilibrium
rollup structure. After the relaxation, the rolling diameter is mea-
sured at the mid-plane of CdTe,S;_,/CdTe system. In addition to
the above atomistic models where CdS were embedded in the top
layer as heterogeneous strips, we also consider two additional
cases, one with the top layer being pure CdS while the other
with the top layer being homogeneously mixed CdTe,S;_ (see
Supplementary Information for details).

2.3. Numerical simulations

For larger-scale rollup and more complex rollup geometries
(e.g., helical) that involve competitive rolling behaviors, they are
beyond the reach of MD simulations, and consequently numerical
simulations using finite element modeling (FEM) were used, im-
plemented by the ABAQUS package [65]. The layered structures
with predefined inhomogeneous strips were built in the mod-
ule of composite layups, and 4-node doubly curved thin/thick

Table 1

The values of lattice constants (a) and elastic constants (Cyy, Cy2, C44) obtained
through the MD simulations at 0 K, and the derived Voight averaged Young's
modulus and Poisson’s ratio [63].

Material ~ Cy; (GPa)  Cyp (GPa)  Cyq (GPa) E (GPa) v a (nm)
CdsS 108 37.5 46.6 102.6 022 0.5835
CdTe 64 33 23 52 0.3 0.6413

shell elements with reduced integration (S4R) were used to dis-
cretize the shell geometry. The initial lattice mismatch strain
was realized through setting different thermal expansion coef-
ficients for each layer with controllable temperature variation.
ABAQUS explicit/dynamic package was employed to examine the
self-rolling behaviors of membranes with strip heterogeneous
elements embedded. No pre-constrain was imposed to influence
the rollup direction corresponding to the situation of isotropic
etching release.

3. Results and discussions

The MD simulated rollup configurations with the CdS strips
aligned along the longitude and lateral directions are illustrated
in Fig. 2(c) and (d) respectively. The simulated rollup diameters
as the volume fraction F of the active material CdS varies for
two representative sets of layer thicknesses, i.e., (hf/hs) being
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Fig. 3. (a) The (partial) atomic configuration of an example heterogeneous bilayer configuration of longitudinal alignment of strips with small F = 0.2, where a
curved outer surface can be observed, with the surface grooving exaggerated in the schematic view in (b).

(3.24/3.24) and (4.54/3.24) nm are listed in Fig. 2(e) and (f)
respectively. With increasing volume fraction that gives rise to
more lattice mismatch, the rollup diameter (curvature) decreases
(increases) as expected. Our results also reveal that the longitudi-
nal strip alignment leads to smaller rollup diameter compared to
that from lateral strip alignment with the same volume fraction,
indicative of more driving force produced by longitudinal align-
ment, which is likely due to anisotropy in elastic constants. In
addition, increase in the thickness ratio hy[hs also results in larger
rollup diameters. Comparing the simulation results with the con-
tinuum model predictions in Fig. 2, we see that overall good
agreement is achieved. Deviation between MD simulation and
continuum model prediction starts to appear for small volume
fracture, e.g., for F < 0.3 in the case of longitudinal alignment of
strips, the model prediction underestimates the rollup diameter.
Such deviation can be attributed to surface grooving induced
strain relief at interfaces between strips, as illustrated in Fig. 3.
Actually, our theoretical predictions are based on the assumption
that when the matrix and heterogeneous elements are bonded
together, they would contract the same amount along the lon-
gitudinal direction and obtain even outer surface. However, it is
no longer the real case when surface grooving happens, and the
mismatch strain along longitudinal direction would be released,
resulting in larger rollup diameters.

Further to the simple rollup structures examined by the MD
simulations, the role of heterogeneous elements in the forma-
tion of the more complex self-rolling geometries, i.e., helical
shapes, were investigated using FEM simulations. The FEM model
is schematically illustrated in Fig. 4(a) where helical formation
from a starting parallelogram bilayer membrane of dimensions
of 8 pm x 40 wm with a designed helical angle « = 26°
and a fixed h, = 25 nm was considered. The heterogeneous
elements were taken to be aligned parallel to the short edge
of the parallelogram. The volume fraction F and minimum strip
width are taken to be 0.5 and 0.1 um, respectively. Then the
corresponding lattice mismatch is realized by setting different
thermal expansion coefficients for different components with de-
sired temperature variations. With the volume fraction fixed, the
lattice mismatch is determined and specified by the lattice con-
stants of CdTe and CdS. However, we allow the elastic constants of
the heterogeneous elements to vary, rather than being limited to
the CdTe,S;_y, which would enable us to extend the investigation
beyond CdTe,S;_yx/CdTe material system. Specifically, we allow
the ratio of difference in elastic constants, defined as A(= (Efy —
E)/Es) to vary between —1 to 1 (note CdTe,S;_,/CdTe would only
allow A to vary in the range of [0, 1]). Meanwhile we also vary
the height of the top layer hy.

The rolling behaviors and resultant helical geometries were
then examined. As illustrated in Fig. 4, different helical rolling
behaviors can be achieved depending on the combination of A
and hy. In particular, when (A, hy) fall into certain regimes, there
exist two well-defined, distinct rolling modes, with the rolling
direction parallel (Mode I) or perpendicular (Mode II) to the
aligned direction of heterogeneous elements, while otherwise
the rolling direction/geometry is not well defined. Here, a rollup
configuration is considered “not defined” when the helix shows
non-straight axis (i.e., there is no well-defined helix axis) and
spatially varying curvature (see Supplementary Information for
details). From Fig. 4, we see that the occurrence of Mode I or
Mode II rolling is strongly dependent on A, i.e., Mode I and Mode
I are induced in regimes where A assumes large positive and
negative values respectively. This suggests that Mode I necessi-
tate stiffer heterogeneous elements than the matrix while Mode
I require the opposite. Meanwhile, we see that the threshold A to
trigger Mode I rolling shows a non-monotonic dependence of the
top layer thickness hy. This non-monotonic response can be at-
tributed to the competitive balance between higher driving force
for rolling and larger bending stiffness, as the top layer thick-
ness increases, where, the local minimum in both cases indicates
the point where the benefit from the increased driving force of
thicker active layer is offset by the loss of increased bending stiff-
ness of increased thickness. But for Mode II, increased top layer
thicknesses require larger threshold A values, which means no
local equilibrium could be achieved for the increased driving force
and larger bending stiffness. The competition between Mode I
and Mode II as A varies may also be further analyzed through
examining the corresponding equilibrium strain energies of the
rollup structure (see Supplementary Information for details).

For cases of helical rolling falling into the regimes of Mode
I and Mode II, the helix configuration is well defined, and the
helix diameter is measured. Meanwhile, the helix diameter is
assumed to be same as the normal rollup diameter and thus can
also be predicted based on Egs. (13)-(16). The model predicted
helix diameters (Dzrf,?x) are compared with the FEM simulated
ones (DIEM ) in Fig. 4(c), for a few sample cases of Mode I or Mode
II rolling, showing excellent agreement, which further evidences
the accuracy of the analytical model. Figs. 2 and 4 together
demonstrate that it is possible to predictively tune both the
rolling direction and rollup curvature by modulating the material
heterogeneity. It is also worth noting that the theoretical frame-
work developed is size and material independent, and may be
readily extended to examine the self-rolling behaviors of systems
of more complex architectures and/or material responses (see
Supplementary Information for additional details).
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Fig. 4. (a) FE simulated helical rolling processes of the bilayer of CdTe,S;_x/CdTe with alternative distributed heterogeneous strips of volume fraction 0.5 where
two distinct rolling modes (Mode I and Mode II) are observed. The occurrence of these two modes depends on A(= (Ef1 — Es)/Es) and hyq, as illustrated in (b),
where the light cyan and light gray regions correspond to Mode I and Mode II occurring, while the white region corresponds to the situation when no well-defined
helical shape is formed from rolling. (c) Comparison of the model predicted helix diameters (D',:';‘;ﬂ) from Egs. (13)-(16) and the FEM simulated ones (DM for a

few sample cases of helixes, being either Mode I or Mode II, obtained at different (A, hs;) combinations, where the symbols denote FEM data.

4. Conclusion

In summary, we presented a comprehensive theoretical study
of the effects of material heterogeneity on self-rolling of strained
membranes. An analytical model has been established to pre-
dict self-rolling curvatures of strained bilayer membranes, ac-
counting for material heterogeneity and strain anisotropy. The
accuracy of our model is validated through molecular dynamics
(MD) simulations on the CdTe,S;_,/CdTe bilayer system. Further
to MD simulations, numerical simulations using finite-element
modeling (FEM) have been performed to examine the role of het-
erogeneous elements in the complex helical rolling. It has been
demonstrated that different helical rolling modes can be induced
by modulating the material heterogeneity and layer thickness,
with the resultant helix diameter well predicted by the analytical
model. The present study offers new thoughts towards predictive
design and tuning of complex 3D structures based on strained
membranes.
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