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A B S T R A C T   

The vibration characteristics and damping of three-dimensional graphene honeycombs (3DGHs) 
were studied using molecular dynamics simulations and continuum modeling. Both zigzag and 
armchair 3DGHs were considered. Longitudinal harmonic excitation was applied on the free end 
of the cantilever honeycomb along the axial direction. Based on the curves of the vibration re-
sponses and the amplitude-frequency characteristic of the 3DGH, it was revealed that the 
amplitude of vibration response and the resonant frequencies of the 3DGHs were influenced by 
both the excitation frequency and the amplitude of the excitation force. Moreover, the vibration 
characteristics of the 3DGHs exhibit spring softening nonlinearity, with greater nonlinearity 
observed as the exciting force increases. The linear and nonlinear damping of the 3DGHs were 
further evaluated using the loss factor in the sub-resonant regime under various excitation forces, 
showing that the 3DGH as a resonator can be excited at higher frequencies of GHz with a small 
loss factor than graphene and CNT. This study demonstrates the relationships of resonant fre-
quencies and damping with the frequency and amplitude of the excitation force in 3DGHs, 
providing theoretical foundation for designing 3DGH nanomechanical resonators.   

1. Introduction 

Thanks to their unique and remarkable physical properties, graphene and its derivatives have been extensively investigated and 
promised unprecedented possibilities for nanotechnology [1–12]. Recently, the advancement in the synthesis of three-dimensional 
(3D) porous architectures of graphene-based materials, including carbon nanotube (CNT) [13], 3D graphene/nanoparticle aerogel 
[14], and metal-decorated 3D graphene [15] has furthered their potential applications in energy storage [16–18], biological/medical 
sensors [19] and semiconductor transistors [20]. Among others, 3D graphene honeycomb (3DGH), being one type of carbon allotrope, 
has attracted special interest, which has successfully synthetized through depositing vacuum sublimated graphite, and possesses stable 
lattice structure and exceptional mechanical and physical properties [21–24]. The extensive studies of thermal conductivity and 
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mechanical characteristics of the 3DGH have demonstrated its high capacity for gas storage [21], superior ductility [25] and the best 
specific strength in 3D carbon nanomaterials [26], and thus enabled the applications as structural composites [27], high thermal 
conductivity nanodevice [26] and gas adsorption sensors [28]. 

In addition to the above applications, 3DGH also has great potential for various sensing technology applications, which not only 
retain the excellent properties of the 2D graphene sheets including high resonant frequencies and remarkable mechanical charac-
teristics [29,30], but provide the geometrical and mechanical flexibility in bulk form, which further enables the diversified manip-
ulation and incorporation in the practical device design, targeting at desirable durability and stability. Therefore, it is expected that 
3DGH can serve as a great candidate material for application in nanomechanical resonators and may improve and create new features 
of nanomechanical sensor. To evaluate the possibility in utilizing 3DGH in nanomechanical resonators, it is of critical importance to 
study the linear and nonlinear vibration characteristics of 3DGH. However, to date, no systematic studies had been reported on the 
vibration and damping characteristics of nanomechanical resonators built from 3DGH, particularly on its nonlinear vibration 
characteristics. 

In this work, the characteristics of vibration and damping of 3DGH resonators under the longitudinal harmonic excitation have 
been investigated by molecular dynamics (MD) simulations combined with continuum modeling. The contents are arranged as the 
follows. First, two types of 3DGH structures, i.e., zigzag and armchair honeycombs, and their properties are presented. Then, the 
structure, boundary condition and applied load of the two 3DGH cantilever resonators are specified, followed by a detailed description 
of simulation methodology. In the last section, the vibration responses, resonant frequencies and nonlinear amplitude-frequency 
characteristic curves of these two 3DGH resonators are symmetrically explored, and the damping of the 3DGH resonators are eval-
uated and analyzed. 

2. Simulation methodology 

The 3DGH structure is composed of arranging and connecting several hexagonal honeycomb units, formed by folding a flat gra-
phene sheet. Two cantilever structures of 3DGH have been constructed and simulated, as shown in Fig. 1. One structure, called zigzag 
honeycomb, was theoretically proposed by Park and Kuc, which is constructed by arranging sp [2]-bonded carbon atoms in the 
honeycomb unit walls as well as using sp [3]-bonded carbon atoms to form junctions between adjacent honeycomb units, as shown in 
Fig. 1 (a) [31]. This structure is thermodynamically and mechanically stable. The other structure is called armchair honeycomb, where 
both the wall and junctions of the honeycomb are composed of sp [2]-bonded carbon atoms, as depicted in Fig. 1 (b). The armchair 
honeycomb has been experimentally synthesized and possess remarkable stability [21,31]. Fig. 1 (c) illustrates the Cartesian coor-
dinate system of 3DGH established for our simulations with X-axis, Y-axis and Z-axis being the lattice directions, respectively. The side 
length of honeycomb unit is equal in order to retain the properties of graphene and is represented using l. One end of the 3DGH is 
clamped as shown in dark red, and the other end is free. After thermally equilibration at target temperature, we apply a series of 
longitudinal harmonic excitation forces Fz along Z-axial direction to the free end of 3DGH and record the corresponding time-series of 
axial displacements. Fz, have the form of Fdsin(ωdt), where Fd and ωd are the amplitude and the angular frequency of the excitation 
force at the atomic layer of the free end, respectively with ωd ¼ 2πfd (fd is the excitation frequency) [32]. The geometrical dimensions of 
the 3DGHs are listed in Table 1. Fig. 1 (d) showcases a 3D supercell of 3DGH, where periodic and free boundary conditions were 
imposed in the lateral (i.e., X and Y) and axial (i.e., Z) directions, respectively. 

Fig. 1. Structures of 3DGH. The magnified images of atomic construction of a zigzag honeycomb and an armchair honeycomb at junctions are 
shown in (a) and (b), respectively. As schematic diagram shown in (c), one end of cantilever honeycomb unit is fixed, and the longitudinal harmonic 
excitation is applied at free end of the honeycomb unit along the honeycomb’s axis, where l represents the side length of honeycomb unit, and Fz 
represents the harmonic excitation force. The periodic and free boundary conditions are used in X/Y and Z, respectively, as shown in (c). An integral 
simulation model of 3DGH resonator is cuboid and a typical three-dimension structure of 3DGH is shown in (d). 
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Classical MD simulations are performed using the LAMMPS package [33], employing the adaptive intermolecular reactive 
empirical bond order (AIREBO) potential [34]. The AIREBO potential has been demonstrated to correctly predict mechanical and 
physical properties of various C-based structures [31,35,36]. In all MD simulations, the honeycombs constructed are first minimized at 
0 K through the conjugate gradient algorithm [37–39], and then relaxed within the isothermal-isobaric (NPT) ensemble at 300 K over a 
duration of 1 ns to ensure zero stress conditions along all directions [40]. Subsequently, the canonical NVT ensemble has been applied 
to simulate the vibration properties of honeycomb models subjected various axial harmonic excitation forces at the free end of the 
structures. The timestep of 1 fs (fs) has been set for all simulations. 

3. Results and discussion 

The vibration responses of 3DGH is characterized by the axial displacements of the atomic layer at the free end of 3DGH. Fig. 2 
shows the vibration responses of the 3DGHs with different excitation forces at an excitation frequency of 215 GHz. It is seen that when 
Fz ¼ 0, The fluctuation response is all from thermomechanical noise. While with the increase of Fz, the vibration response is composed 
of both thermomechanical noise and harmonic response, and the harmonic response is gradually enhanced with the increase of the 
excitation force. Moreover, the proportion of thermal noise in vibration response decreases as the excitation force increases, and the 
nonlinear vibration response arises when the exciting force is further increased. For example, the peak amplitudes of vibration 
response of these two 3DGHs are more than 50 times bigger than the thermomechanical noise when the amplitude of the excitation 
force is 16.8 GPa. In addition, the amplitudes of vibration responses show the nonlinear characteristics of the zigzag honeycomb at the 
excitation force of 8.4 GPa and of the armchair honeycomb at the excitation force of 16.8 GPa. 

In addition, the thermomechanical noise amplitudes of these two 3DGHs are very close when the excitation force is equal to zero. 
However, there is a difference in the amplitude of vibration response when the longitudinal harmonic excitation is applied. This 
difference becomes larger as the amplitude of the excitation force increases. The amplitude of vibration response of the zigzag hon-
eycomb is larger than that of the armchair honeycomb under the same amplitude of the excitation force and excitation frequency (215 
GHz), and. Furthermore, there is a relatively big difference in the amplitude of vibration response of these two 3DGHs when the 
excitation force is 8.4 GPa, because the zigzag honeycomb produces resonance while the armchair honeycomb does not. This finding 
suggests that the resonant frequency of these two 3DGHs are different at the excitation force of 8.4 GPa and the excitation frequency of 
215 GHz. 

The cross-sectional shapes of the two types of 3DGHs under the maximum excitation force are shown in Fig. 3. Viewing from the Z- 
axis direction, the walls of the honeycomb show a buckle state with the increase of the excitation force. Furthermore, the deformation 
of the zigzag honeycomb is larger than that of the armchair honeycomb at the same excitation force and excitation frequency, because 
the Young’s modulus of the former is smaller than that of the latter. Above results are consistent with the deformation process of the 
honeycomb under the axial static load [31]. 

The amplitude-frequency characteristic curve can be obtained by performing fast Fourier transform (FFT) of the recorded time-series of axial 
vibration responses in frequency domain [41]. As shown in Fig. 4, the amplitude-frequency characteristic curves of the 3DGHs are 
expressed. This curve expresses the relationship between the excitation frequency and the vibration amplitude. There are some 
prominent peaks in the curve of both honeycombs, where the frequency corresponds to the resonant frequency. The amplitude of the 
vibration reaches the maximum value when the resonance occurs. Meanwhile, in addition to the excitation frequency, the 
amplitude-frequency characteristic curve is also affected by the amplitude of the excitation force. As the excitation force increases, the 
vibration amplitude of the 3DGHs increases and the resonant frequency decreases. 

In addition, the amplitude-frequency characteristic curve of both 3DGHs exhibits nonlinear characteristic. In this work, the 
nonlinear amplitude-frequency characteristic curves of these two 3DGHs present the spring softening nonlinearity, as shown in Fig. 4. 
The larger the exciting force, the greater the nonlinearity. This nonlinearity is extremely evident in the frequency range of the 
resonance region. However, the effect of the nonlinearity on vibration can be ignored in the non-resonant region, because the vibration 
amplitudes in the non-resonant region are far less than those in the resonance region. The resonant frequencies of the 3DGHs under 
different longitudinal harmonic excitation forces are shown in Table 2. 

However, the amplitude-frequency characteristic curves of the two types of honeycombs also exhibits distinctions. It is found that 
under the same excitation force, the resonant frequency of the zigzag honeycomb is lower than that of the armchair honeycomb, but 
the peak amplitude of the former’s vibration at the resonant frequency is larger than that of the latter. Moreover, as the excitation 
frequency increases, the nonlinearity of the former occurs earlier than the latter. Therefore, the nonlinearity of the zigzag honeycomb 
is stronger than that of the armchair honeycomb. 

To quantify the damping of the 3DGH, we further calculated the loss factor by analyzing and calculating the vibration response and 
amplitude-frequency characteristic curves of the honeycomb in the sub-resonant regime based on the method of Kunal and Aluru [42]. 
The excitation force produces work done. The rate of the energy dissipation can be evaluated according to the work done at each unit 
time. The temperature and the internal energy of a microcanonical ensemble is promoted because of the role of this work done. 

Table 1 
Geometrical parameters and mechanical properties of 3DGHs.  

Honeycomb Structure Length (L) Cross-Section Side Length of Honeycomb Unit (l) Axial Stiffness (kz) Young’s Modulus (E) 

Zigzag 20.9 nm 11.1 nm � 8.6  nm 1.25 nm 1082 N/m 238Gpa 
Armchair 21.8 nm 12.6 nm � 9.7  nm 1.4 nm 1433 N/m 258Gpa  
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Fig. 2. Vibration responses at the free end of (a) a zigzag honeycomb and (b) an armchair honeycomb. The vibration response curves are presented 
in green, blue and red when the longitudinal harmonic excitation force with amplitudes of 5.0 GPa, 8.4 GPa and 16.8 GPa are used, respectively. The 
excitation frequency is 215 GHz for all the simulations. 

Fig. 3. Atomic configurations of the zigzag (a) and armchair (b) honeycombs viewed along the Z-axis direction under longitudinal harmonic 
excitation force with amplitudes of 0 GPa, 6.7 GPa and 12.1 GPa, respectively. 

Fig. 4. Nonlinear amplitude-frequency characteristic curves of (a) a zigzag honeycomb and (b) an armchair honeycomb. The nonlinear amplitude- 
frequency curves are presented in black, green, purple, blue and red when the longitudinal harmonic excitation force with amplitudes of 5.0 GPa, 
6.7 GPa, 8.4 GPa, 12.1 GPa and 16.8 GPa, respectively. The range of the excitation frequencies is from 155 GHz to 285 GHz for all the simulations. 

Table 2 
Resonant frequencies of the 3DGHs.  

Honeycomb structure 5.0 GPa 6.7 GPa 8.4 GPa 12.1 GPa 16.8 GPa 

Zigzag (GHz) 224 218 215 204 194 
Armchair (GHz) 228 224 218 212 204  
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Therefore, the dissipated energy in unit time Wd can be calculated in Equation (1) [41–43]. 

Wd ¼
1

fdTn

Z Tn

0
Fdvz sinðωdtÞdt (1)  

where Tn is the overall time of work done, and vz is the atomic velocity of Z-axis. The stored energy Ws can be calculated in Equation (2) 
[41–43]. 

Ws¼
1
2
kzA2

z (2)  

where kz is the stiffness of the Z-axis, and Az is the peak amplitude of the Z-axial vibration. Az can be obtained in Equation (3) [41–43]. 

Az¼ 2�
maxfabs½FFTðRzÞ�g

nd
(3)  

where, Rz is the data of the Z-axial vibration response at the center of free end’s atomic layer, and the total amount of the data points is 
defined as nd when these data are performed by FFT. 

Therefore, the loss factor η is computed in Equation (4) [41–43]. 

η¼ Wd

2π �Ws
(4) 

The loss factors at the temperature of 300 K for the longitudinal harmonic vibration of the zigzag and armchair honeycombs are 
shown in Table 3. In sub-resonant regime, i.e., when the excitation forces vary from 1.7 GPa to 5.0 GPa, the differences between loss 
factors of zigzag and loss factors of armchair are relatively small. Nonlinear vibration affects the damping of the 3DGHs. The nonlinear 
damping of the zigzag and armchair honeycombs, i.e., with the excitation forces ranging from 5.9 GPa to 8.4 GPa, the differences 
between loss factors of zigzag and armchair become larger as the excitation force increases beyond the linear regime. The greater the 
excitation force, the larger the difference. The difference is 19% for the zigzag and armchair honeycombs under the excitation force of 
8.4 GPa. Furthermore, under the same excitation frequency and amplitude of excitation force, the damping of the zigzag honeycomb is 
larger than that of armchair honeycomb. 

A comparison of the loss factors of the 3DGHs with the previous results for the graphene and CNT presented in Refs. [44–46] has 
shown that their loss factors are comparable ranging from 10� 2 to 10� 4. The temperatures are the same (300 K) in these studies. High 
resonant frequency combined with low loss factor is a significant performance indicator for application of nanomechanical resonator. 
At room temperature, the 3DGHs as resonator can be excited at higher frequencies of GHz with a small loss factor than graphene and 
CNT. The loss factor of the 3DGHs are strongly changed by the excitation force, which is in good agreement with the conclusion of the 
loss factor for graphene and CNT in previous studies [44–46]. 

Moreover, the 3DGHs resonators have strong covalently bonded configuration and thus possess superior specific strength and ultra- 
high stretch ability along all three directions, thus enhanced stability and durability could be achieved with a wide range of excitation 
forces and ultra-high excitation frequencies (GHz) compared with traditional graphene and CNT resonators [26,47,48]. In addition, 
flexible structural tailoring could be further performed to obtain 3DGHs resonators with various geometries and easy to be directly 
used in practical 3D nanodevices, which is better than the doubly clamped graphene resonators of low-dimensional membrane geo-
metric structure. 

4. Conclusions 

In summary, we explored the vibration characteristics and damping of two types of 3DGHs, i.e., zigzag and armchair honeycombs, 
under longitudinal harmonic excitation using continuum modeling and atomistic simulations. 

4.1. Vibration characteristics 

The axial stiffness and the Young’s modulus of these two 3DGHs are received by static tensile simulations. The vibration response 
curves and properties of fluctuation, linear vibration and nonlinear vibration of these two honeycombs are presented under the 
longitudinal harmonic excitation at the atomic layers of the 3DGHs’ free end. The amplitude of vibration response is gradually 
enhanced with the excitation force increasing, and the nonlinear vibration appears when the exciting force is further increased. The 
amplitude of vibration response of the zigzag honeycomb is larger than the one of armchair honeycomb on the condition of the same 
exciting force. The projection views of 3DGH’s sectional deformation have been illustrated under various excitation forces. The 
amplitude-frequency characteristic curves of the 3DGHs are shown, which are influenced by the excitation frequency as well as the 
amplitude of the excitation force. As the excitation force increases, the resonant frequencies of the 3DGHs decreases. The amplitude- 
frequency characteristic curve of the 3DGHs exhibits nonlinear characteristics when the exciting force is further increased. The larger 
the exciting force, the greater the nonlinearity. Moreover, the nonlinearity of the 3DGHs presents the spring softening nonlinearity. 
The nonlinear influence on vibration is obvious in the resonance region. However, the effect of the nonlinearity on vibration can be 
ignored in the non-resonant region due to the small vibration amplitude. Besides, under the same excitation force, the resonant fre-
quency of the zigzag honeycomb is lower than that of the armchair honeycomb, but the peak amplitude of vibration of the former at the 
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resonant frequency is larger than that of the latter. Therefore, the nonlinearity of the zigzag honeycomb is stronger than that of the 
armchair honeycomb. 

4.2. Loss factors 

The loss factors have been evaluated through calculating dissipated and stored energies during the variation of 3DGHs’ based on 
the energy-dissipation mechanism, which determine the damping characteristics of 3DGH in the sub-resonant regime. Under various 
amplitudes of excitation force, the loss factors of the zigzag and armchair honeycombs are received at the temperature of 300 K in 10 
GHz for the longitudinal harmonic vibration. The errors between the loss factors of zigzag and loss factors of armchair are compared in 
linear and nonlinear vibration. Under the same excitation frequency and amplitude of excitation force, the loss factor of the zigzag 
honeycomb is larger than that of armchair honeycomb. Furthermore, the loss factors of the 3DGHs can be adjusted by varying the 
excitation force, which is valuable in both practical application and theoretical study. 

The authors declare that they have no conflict of interest. 

CRediT authorship contribution statement 

Bing Li: Conceptualization, Writing - original draft. Yulan Wei: Writing - original draft. Fanchao Meng: Investigation, Meth-
odology. Pengfei Ou: Formal analysis. Yuying Chen: Formal analysis. Lei Che: Writing - review & editing. Cheng Chen: Supervision, 
Writing - original draft. Jun Song: Conceptualization, Writing - review & editing. 

Acknowledgments 

We greatly acknowledge the financial support from China Scholarship Council (No. 201708330107 and 201306290017), National 
Natural Science Foundation of China (51704243 and 5164205), McGill Engineering Doctoral Award, and Natural Sciences and En-
gineering Research Council of Canada (NSERC) Discovery grant (grant # RGPIN-2017-05187). We also thank Supercomputer Con-
sortium Laval UQAM, McGill, and Eastern Quebec for providing computing power. 

References 

[1] M.J. Allen, V.C. Tung, R.B. Kaner, Chem. Rev. 110 (2010) 132. 
[2] B. Li, P.F. Ou, Y.L. Wei, X. Zhang, J. Song, Materials 11 (2018). 
[3] D. Akinwande, C.J. Brennan, J.S. Bunch, P. Egberts, J.R. Felts, H.J. Gao, R. Huang, J.S. Kim, T. Li, Y. Li, K.M. Liechti, N.S. Lu, H.S. Park, E.J. Reed, P. Wang, B. 

I. Yakobson, T. Zhang, Y.W. Zhang, Y. Zhou, Y. Zhu, Extrem. Mech. Lett. 13 (2017) 42. 
[4] W.W. Liu, S.P. Chai, A.R. Mohamed, U. Hashim, J. Ind. Eng. Chem. 20 (2014) 1171. 
[5] Q.L. Fang, Y. Shen, B.L. Chen, Chem. Eng. J. 264 (2015) 753. 
[6] S. Sadeghzadeh, M.M. Khatibi, Superlattice. Microst. 117 (2018) 271. 
[7] H. Abdelsalam, V.A. Saroka, W.O. Younis, Superlattice. Microst. 129 (2019) 54. 
[8] B.L. Li, T. Liu, D.W. Hewak, Q.J. Wang, Superlattice. Microst. 113 (2018) 401. 
[9] S.W. Wang, B.C. Yang, H.Y. Chen, E. Ruckenstein, J. Mater. Chem. 6 (2018) 6815. 

[10] X. He, L. Gao, N. Tang, J.X. Duan, F.J. Xu, X.Q. Wang, X.L. Yang, W.K. Ge, B. Shen, Appl. Phys. Lett. 105 (2014). 
[11] X. He, N. Tang, X.X. Sun, L. Gan, F. Ke, T. Wang, F.J. Xu, X.Q. Wang, X.L. Yang, W.K. Ge, B. Shen, Appl. Phys. Lett. 106 (2015). 
[12] D.H. Wu, B.C. Yang, H.Y. Chen, E. Ruckenstein, Energy Storag. Mater. 16 (2019) 574. 
[13] M.Q. Zhao, X.F. Liu, Q. Zhang, G.L. Tian, J.Q. Huang, W.C. Zhu, F. Wei, ACS Nano 6 (2012) 10759. 
[14] W.F. Chen, S.R. Li, C.H. Chen, L.F. Yan, Adv. Mater. 23 (2011) 5679. 
[15] H.J. Huang, S.B. Yang, R. Vajtai, X. Wang, P.M. Ajayan, Adv. Mater. 26 (2014) 5160. 
[16] E. Yoo, H.S. Zhou, ACS Nano 5 (2011) 3020. 
[17] J.X. Zhu, X.Y. Guo, H. Wang, W.X. Song, J. Mater. Sci. 53 (2018) 12413. 
[18] S.W. Wang, Z.R. Chen, B.C. Yang, H.Y. Chen, E. Ruckenstein, J. Colloid Interface Sci. 555 (2019) 431. 
[19] Y.X. Huang, X.C. Dong, Y.X. Liu, L.J. Li, P. Chen, J. Mater. Chem. 21 (2011) 12358. 
[20] H.L. Xu, Z.Y. Zhang, Z.X. Wang, S. Wang, X.L. Hang, L.M. Peng, ACS Nano 5 (2011) 2340. 
[21] N.V. Krainyukova, E.N. Zubarev, Phys. Rev. Lett. 116 (2016). 
[22] J. Zhang, Carbon 131 (2018) 127. 
[23] J. Zhang, Meccanica 53 (2018) 2999. 

Table 3 
Loss factors at 300 k for zigzag and armchair honeycombs.  

Honeycomb structure Excitation frequency fd (GHz) Force Fd (GPa) Loss factors η 

Zigzag 10 1.7 1.14 � 10� 2 

3.4 2.27 � 10� 2 

5.0 2.90 � 10� 2 

5.9 3.44 � 10� 2 

8.4 3.84 � 10� 3 

Armchair 10 1.7 1.09 � 10� 2 

3.4 2.10 � 10� 2 

5.0 2.61 � 10� 2 

5.9 2.88 � 10� 2 

8.4 3.11 � 10� 3  

B. Li et al.                                                                                                                                                                                                               

http://refhub.elsevier.com/S0749-6036(19)31207-8/sref1
http://refhub.elsevier.com/S0749-6036(19)31207-8/sref2
http://refhub.elsevier.com/S0749-6036(19)31207-8/sref3
http://refhub.elsevier.com/S0749-6036(19)31207-8/sref3
http://refhub.elsevier.com/S0749-6036(19)31207-8/sref4
http://refhub.elsevier.com/S0749-6036(19)31207-8/sref5
http://refhub.elsevier.com/S0749-6036(19)31207-8/sref6
http://refhub.elsevier.com/S0749-6036(19)31207-8/sref7
http://refhub.elsevier.com/S0749-6036(19)31207-8/sref8
http://refhub.elsevier.com/S0749-6036(19)31207-8/sref9
http://refhub.elsevier.com/S0749-6036(19)31207-8/sref10
http://refhub.elsevier.com/S0749-6036(19)31207-8/sref11
http://refhub.elsevier.com/S0749-6036(19)31207-8/sref12
http://refhub.elsevier.com/S0749-6036(19)31207-8/sref13
http://refhub.elsevier.com/S0749-6036(19)31207-8/sref14
http://refhub.elsevier.com/S0749-6036(19)31207-8/sref15
http://refhub.elsevier.com/S0749-6036(19)31207-8/sref16
http://refhub.elsevier.com/S0749-6036(19)31207-8/sref17
http://refhub.elsevier.com/S0749-6036(19)31207-8/sref18
http://refhub.elsevier.com/S0749-6036(19)31207-8/sref19
http://refhub.elsevier.com/S0749-6036(19)31207-8/sref20
http://refhub.elsevier.com/S0749-6036(19)31207-8/sref21
http://refhub.elsevier.com/S0749-6036(19)31207-8/sref22
http://refhub.elsevier.com/S0749-6036(19)31207-8/sref23


Superlattices and Microstructures 139 (2020) 106420

7

[24] S.W. Wang, D.H. Wu, B.C. Yang, E. Ruckenstein, H.Y. Chen, Nanoscale 10 (2018) 2748. 
[25] X.K. Gu, Z.Q. Pang, Y.J. Wei, R.G. Yang, Carbon 119 (2017) 278. 
[26] Z.Q. Pang, X.K. Gu, Y.J. Wei, R.G. Yang, M.S. Dresselhaue, Nano Lett. 17 (2017) 179. 
[27] C.Y. Zhong, Y.P. Chen, Y.E. Xie, S.Y.A. Yang, M.L. Cohen, S.B. Zhang, Nanoscale 8 (2016) 7232. 
[28] Y. Gao, Y.P. Chen, C.Y. Zhong, Z.W. Zhang, Y.E. Xie, S.B. Zhang, Nanoscale 8 (2016) 12863. 
[29] R.A. Barton, B. Ilic, A.M. van der Zande, W.S. Whitney, P.L. McEuen, J.M. Parpia, H.G. Craighead, Nano Lett. 11 (2011) 1232. 
[30] C.Y. Chen, S. Rosenblatt, K.I. Bolotin, W. Kalb, P. Kim, I. Kymissis, H.L. Stormer, T.F. Heinz, J. Hone, Nat. Nanotechnol. 4 (2009) 861. 
[31] F.C. Meng, C. Chen, D.Y. Hu, J. Song, J. Mech. Phys. Solid. 109 (2017) 241. 
[32] A. Pedrielli, S. Taioli, G. Garberoglio, N.M. Pugno, Carbon 116 (2017) 20. 
[33] S. Plimpton, J. Comput. Phys. 117 (1995) 1. 
[34] S.J. Stuart, A.B. Tutein, J.A. Harrison, J. Chem. Phys. 112 (2000) 6472. 
[35] T. Zhang, X.Y. Li, H.J. Gao, Extrem. Mech. Lett. 1 (2014) 3. 
[36] T. Zhang, X.Y. Li, S. Kadkhodaei, H.J. Gao, Nano Lett. 12 (2012) 4605. 
[37] C. Chen, F.C. Meng, J. Song, J. Appl. Phys. 117 (2015). 
[38] C. Chen, P.F. Song, F.C. Meng, P.F. Ou, X.Y. Liu, J. Song, Appl. Phys. Lett. 113 (2018). 
[39] NJ, WSJ, Numerical Optimization, second ed., 2006, p. 101. 
[40] C. Chen, F.C. Meng, P.F. Ou, G.Q. Lan, B. Li, H.C. Chen, Q.W. Qiu, J. Song, J. Phys. Condens. Matter 31 (2019). 
[41] Z. Nourmohammadi, S. Mukherjee, S. Joshi, J. Song, S. Vengallatore, J. Microelectromech. Syst. 24 (2015) 1462. 
[42] K. Kunal, N.R. Aluru, Phys. Rev. B 84 (2011). 
[43] S. Mukherjee, J. Song, S. Vengallatore, Model. Simulat. Mater. Sci. Eng. 24 (2016). 
[44] S.K. Georgantzinos, G.I. Giannopoulos, D.E. Katsareas, P.A. Kakavas, N.K. Anifantis, Comput. Mater. Sci. 50 (2011) 2057. 
[45] N. Kacem, S. Hentz, D. Pinto, B. Reig, V. Nguyen, Nanotechnology 20 (2009). 
[46] V. Sazonova, Y. Yaish, H. Ustunel, D. Roundy, T.A. Arias, P.L. McEuen, Nature 431 (2004) 284. 
[47] Y. Liu, J.J. Liu, S.F. Yue, J.Q. Zhao, B. Ouyang, Y.H. Jing, Physica Status Solidi B-Basic Solid State Phys. 255 (2018). 
[48] Z. Zhang, A. Kutana, Y. Yang, N.V. Krainyukova, E.S. Penev, B.I. Yakobson, Carbon 113 (2017) 26. 

B. Li et al.                                                                                                                                                                                                               

http://refhub.elsevier.com/S0749-6036(19)31207-8/sref24
http://refhub.elsevier.com/S0749-6036(19)31207-8/sref25
http://refhub.elsevier.com/S0749-6036(19)31207-8/sref26
http://refhub.elsevier.com/S0749-6036(19)31207-8/sref27
http://refhub.elsevier.com/S0749-6036(19)31207-8/sref28
http://refhub.elsevier.com/S0749-6036(19)31207-8/sref29
http://refhub.elsevier.com/S0749-6036(19)31207-8/sref30
http://refhub.elsevier.com/S0749-6036(19)31207-8/sref31
http://refhub.elsevier.com/S0749-6036(19)31207-8/sref32
http://refhub.elsevier.com/S0749-6036(19)31207-8/sref33
http://refhub.elsevier.com/S0749-6036(19)31207-8/sref34
http://refhub.elsevier.com/S0749-6036(19)31207-8/sref35
http://refhub.elsevier.com/S0749-6036(19)31207-8/sref36
http://refhub.elsevier.com/S0749-6036(19)31207-8/sref37
http://refhub.elsevier.com/S0749-6036(19)31207-8/sref38
http://refhub.elsevier.com/S0749-6036(19)31207-8/sref39
http://refhub.elsevier.com/S0749-6036(19)31207-8/sref40
http://refhub.elsevier.com/S0749-6036(19)31207-8/sref41
http://refhub.elsevier.com/S0749-6036(19)31207-8/sref42
http://refhub.elsevier.com/S0749-6036(19)31207-8/sref43
http://refhub.elsevier.com/S0749-6036(19)31207-8/sref44
http://refhub.elsevier.com/S0749-6036(19)31207-8/sref45
http://refhub.elsevier.com/S0749-6036(19)31207-8/sref46
http://refhub.elsevier.com/S0749-6036(19)31207-8/sref47
http://refhub.elsevier.com/S0749-6036(19)31207-8/sref48

	Atomistic simulations of vibration and damping in three-dimensional graphene honeycomb nanomechanical resonators
	1 Introduction
	2 Simulation methodology
	3 Results and discussion
	4 Conclusions
	4.1 Vibration characteristics
	4.2 Loss factors

	CRediT authorship contribution statement
	Acknowledgments
	References


