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ABSTRACT: Cement production is a carbon-intensive indus-
trial process, with the sector contributing ∼8% of global
anthropogenic CO2 emissions. On average, producing each
kilogram of cement leads to the emission of 1 kg of CO2�the
combination of fuel combustion emissions and carbon released
from the feedstock, limestone (CaCO3). Here we report
electrochemical cement production based on anion-mediated
electrochemical calcium extraction (ECE) that addresses both
feedstock and energy emissions. The in situ-generated acidic electrolytes release the feedstock CO2 emissions at high purity,
enabling direct carbon utilization or sequestration without costly capture and purification steps. Energy embodied within a
separate H2 output stream is sufficient to sinter Ca(OH)2 to produce portland cement, thus removing the CO2 emissions
associated with fuel combustion. We then replace CaCO3 with a carbon-free calcium feedstock, gypsum, thereby removing the
CO2 emissions embodied in the feedstock. Technoeconomic analysis forecasts that this method could provide a viable,
decarbonized cement alternative.

Cement is a precursor to concrete�second only to water
as the most used material in the world.1−3 The global
production of cement currently exceeds 4 billion metric

tons annually4 and is expected to grow 25−50% by 2050.5,6

Cement manufacture consumes 3% of global energy6,7 and
accounts for ∼8% of anthropogenic CO2 emissions.3,7,8 This
share of emissions is expected to grow in the decades ahead, with
persistent demand. On average, 1 kg of CO2 is emitted for each
kilogram of cement produced.6 The production of cement
clinker requires the calcination of limestone (CaCO3) at ∼900
°C and subsequent sintering with SiO2 at ∼1500 °C, and both
processes are carbon intensive. The calcination process
decomposes limestone into CaO and releases CO2 (Figure
1a). These emissions are inherent to the carbon-containing
feedstock and account for ∼50% of the total CO2 emissions
during cement manufacture, with fuel combustion accounting
for the balance.9,10 Although chemical and steel production
present a range of opportunities for electrification and
decarbonization,11 low-carbon cement production remains a
challenge.

Applying established carbon capture and purification to
cement production is prohibitively costly.12,13 Today’s process
emits 15−30% CO2 in a mixture of NOx, SOx, and O2 that is
challenging to separate. Removing CO2 from this post-
combustion stream requires ∼4 GJ/tonne CO2 and adds $90/

tonne cement to the cost of manufacturing�a severe 2-fold
increase in the current cost of cement production.14,15

Electrified kilns16 and biofuel adoption17 can reduce energy
emissions but cannot address feedstock emissions�the 50% of
emissions embodied within limestone. Alternative materials
have been developed to replace clinker, either in part or in full, to
reduce feedstock emissions.18−22 However, these alternatives
are projected to meet <5% of future demand due to barriers of
availability, price, and technical limitations.3,18,23 Achieving
substantial reductions in CO2 emissions will require addressing
both the energy emissions and the carbon content embodied
within the feedstock.

Synthesizing cement electrochemically provides a means to
reduce energy and feedstock emissions by taking advantage of
pH gradients developed in an electrolyzer.24−26 At the locally
acidic anode, CaCO3 is neutralized into Ca2+ and CO2. The Ca2+

ions migrate across the cell and combine with OH− generated by
the cathodic hydrogen evolution reaction to form Ca(OH)2.
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The produced Ca(OH)2 precipitate and H2 gas can be used in
the subsequent sintering process as cement feedstock and fuel,
respectively. This approach has been demonstrated in a batch
reactor at 10 mA/cm2, with the potential to significantly reduce
emissions.24 However, this reaction must proceed at an
industrially relevant current density (>100 mA/cm2, Figure 1c
and Note S1) to offer commercial viability. In addition, oxygen is
evolved at the anode along with CO2 in this process. Separating
such a mixture adds an energy cost of ∼2 GJ/tonne cement on
top of the energy requirement for the electrochemical process,
doubling the energy requirement of conventional cement
production (Note S2 part 1, Figure S1).

Here, we took the view that both energy and feedstock
emissions could be addressed in an anion-mediated electro-
chemical calcium extraction (ECE) process (Figure 1b). In such
a scheme, the in situ-generated acidic electrolytes (instead of a
pH gradient) react with the limestone in a separate chamber to
extract calcium cations, ensuring that the CO2 within limestone
is liberated at high purity. This high purity enables direct
downstream utilization or storage without costly carbon capture
and purification steps.27,28 Incorporating highly active catalysts
in a membrane-based electrolyzer, we achieve a current
efficiency of 93% and a full-cell voltage of 2.8 V at 200 mA/
cm2, corresponding to an energy cost of 6.7 GJ/tonne cement�
comparable with conventional cement production without CO2
capture (Note S2 part 2, Figure S1). The cement is produced in
the standard form, portland cement, compatible with the current
market and regulations of the building industry. We then adapt
this process to accommodate a carbon-free feedstock, gypsum
(CaSO4·2H2O), that fully eliminates feedstock emissions.

In the ECE process, limestone is first neutralized by HCl/
HOCl to form high-purity gaseous CO2 (Figure S2) and CaCl2/
Ca(OCl)2 (eq 1, Figure 2a), a soluble salt that has sufficient
conductivity to support the electrochemical reaction. The
CaCl2/Ca(OCl)2 solution is then pumped into the anode of
an electrochemical unit, where chlorine evolution takes place
(eq 2a). The chlorine evolution reaction was chosen as the
anodic reaction because it operates with fast kinetics29 and
regenerates the electrolyte back into a strong acid (eq 2b) for
subsequent CaCO3 neutralization. At the cathode, the hydrogen
evolution reaction (HER) produces gaseous H2 and hydroxide
ions (eq 3). The anode and cathode are positioned on each side
of a cation-exchange membrane (CEM) and an anion-exchange

membrane (AEM), respectively, to deliver Ca2+ and OH− ions
and avoid the electrodeposition of Ca2+ cations on the cathode.
In the gap between the membranes, Ca2+ (from the anode) and
OH− (from the cathode) combine into Ca(OH)2 (eq 4, Figure
S3). Continuous flow of a conductive NaCl electrolyte stream
decreases ionic transfer losses and carries out the Ca(OH)2
precipitated therein. This process has similarities to the
chloralklali process, with the anion mediation here being the
key differentiator and one that enables chloride recycling and
formation of high-purity CO2. The chloralkali process generates
chlorine gas as the product. The chlorine gas can be used to
generate concentrated hydrochloric acid for calcium neutraliza-
tion. However, this process requires an additional step with heat
input and demands costly corrosion-resistant materials to retain
the hydrochloric acid.

+ +

+ + +

HCl HOCl CaCO
1
2

CaCl
1
2

Ca(OCl) CO H O

3

2 2 2 2 (1)

+2Cl Cl 2e2 (2a)

+ +Cl H O HOCl HCl2 2 (2b)

+ +2H O 2e H 2OH2 2 (3)

++Ca 2OH Ca(OH)2
2 (4)

To achieve efficient conversion, we used electrocatalysts with
high activity and selectivity for HER and chlorine evolution
reaction: platinum on carbon30 (Pt/C, Figure S4) and iridium
oxide31 (IrO2, Figure S5), respectively. We first operated the
system at a current density of 100 mA/cm2 to verify its
effectiveness. The system voltage was ∼2.5 V, and the system
operated steadily over an initial 1-h period (Figure S6a). We
determined the current efficiency of the system to be 93%
(Figure S7, method details in Note S3). Further increasing the
current density, the applied voltages showed a linear trend,
indicating that series resistance dominates the process (Figure
2b; see electrochemical impedance spectroscopy measurements
and method details in Figure S9). Further extending the process
by using other halides as the anion mediators (e.g., bromide and
iodide) offers a reduction in the operating voltage, as these
anions oxidize at lower thermodynamic potentials. Among all

Figure 1. Electrified cement production process using electrochemical calcium extraction. Schematics illustrate (a) a conventional carbon-
intensive cement production process and (b) an electrified cement production process using electrochemical calcium extraction. (c)
Breakdown of electrified cement costs at different current densities.
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halides, iodide offers the lowest thermodynamic potential but
oxidizes to form a dense solid iodine layer on the electrode
surface, which imposes a large charge-transfer resistance.32

Bromine is a liquid at ambient temperature and pressure and
does not result in layer formation. Therefore, we further adapted
bromide as the anion and achieved a voltage of 2.4 V at 200 mA/
cm2, ∼0.4 V lower than in the chloride case at the same current
density (Figure 2b).

We collected and dried the white precipitate from the middle
chamber (Figure S6b) and analyzed it using powder X-ray
diffraction (XRD, Figure 2c). We confirmed the precipitate to be
Ca(OH)2 with a small amount of NaCl originating from the
flowing electrolyte. Elemental analysis of the precipitate
confirmed it to be predominantly calcium species. The chloride

mass in the collected precipitate corresponds to ∼0.2 wt% of the
final cement weight�below the threshold limit (method details
in Table S1).33 We further demonstrated the use of a non-
chloride salt as the flowing electrolyte, and the cell showed
similar voltage to that of the NaCl case (Figure S10). Scanning
electron microscopy (SEM, Figure 2d) showed that Ca(OH)2
was made up of hexagonal nanocrystals. We further demon-
strated that the collected high-purity CO2 can be used to
generate valuable precursors for industrial raw materials when
coupled to a CO2 electrolyzer with high conversion efficiency
(Figure 2e,f).34

We adapted the ECE process to operate on carbon-free
feedstocks and thereby eliminate both energy and feedstock
emissions. To present a viable alternative, a carbon-free cement

Figure 2. Ca(OH)2 production in the electrochemical calcium extraction process. (a) Schematic of the ECE process to electrosynthesize
Ca(OH)2. (b) Voltage of the electrochemical unit at different current densities using limestone as the feedstock. (c) XRD pattern and (d)
surfacemorphology of the electrosynthesized Ca(OH)2 precipitate. (e) Schematic of the CO2 removal unit paired with the CO2 electrolyzer. (f)
Faradaic efficiencies vs CO2 conversion for the CO2 electrolyzer.
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feedstock is required that comes from naturally occurring salts
with vast availability and low market price. Gypsum is a naturally
occurring mineral with an annual production rate of 300 million

metric tons35 and is already used as a major cement additive (5%
by mass of portland cement18). Today gypsum is not a viable
alternative CaO source since it requires a higher temperature

Figure 3. Ca(OH)2 production in the electrochemical calcium extraction process by using gypsum as the feedstock. (a) Schematic of the ECE
process to electrosynthesize Ca(OH)2 from gypsum. (b) Voltage of the electrochemical unit at different current densities. (c) XRD pattern and
(d) SEM surface morphology of the electrosynthesized Ca(OH)2 precipitate.

Figure 4. Synthesis of belite and alite using Ca(OH)2 produced in the electrochemical calcium extraction process. XRDpatterns of the produced
belite and alite after sintering the Ca(OH)2 and SiO2mixture (3:1molar ratio) at (a) 1200 °C and (c) 1500 °C for 2 h in air. These patterns show
single-phase belite and alite. Surface morphology of the produced belite and alite after sintering the Ca(OH)2 and SiO2 mixture (3:1 molar
ratio) at (b) 1200 °C and (d) 1500 °C for 2 h in air.
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(1300 °C) compared to limestone (900 °C) and emits a gaseous
SO2 stream when processed in conventional cement plants.36

Through this electrochemical process, gypsum has the potential
to address a portion of the current cement demand that is
currently produced from carbon-intensive limestone.

We placed gypsum directly in the anode of our electro-
chemical unit to synthesize Ca(OH)2 (Figure 3a). With the
gypsum feedstock, acid neutralization was not required, so the
oxygen evolution reaction was used as the anodic reaction. The
electrochemical unit operating on gypsum required voltages
slightly higher than that of the limestone feedstock, at the same
current densities (Figure 3b). We associate the higher voltage
with the lower solubility of gypsum (2.0−2.5 g/L at 25 °C;
electrochemical impedance spectroscopy measurements and
method details in Figure S9). Operating at 200 mA/cm2, the cell
voltage was 3.4 V. A white precipitate was once again collected in
the middle chamber. XRD and SEM reveal Ca(OH)2 having a
similar surface morphology to when we began with limestone
(Figure 3c,d). The current efficiency decreases over 2 h of
electrolysis due to the low solubility of gypsum and accumulated
H+ in the electrolyte, with an average value of 83% (Figure S8).
To ensure efficient operation, the acidic electrolyte must be
replaced periodically, meaning a large volume of acidified water
is generated. Approaches such as increasing the temperature
and/or introducing additional soluble calcium salts into the
electrolyte can increase gypsum solubility in the aqueous
solution to lower the frequency of electrolyte replacement and
should be investigated in the future.37 However, with the current
scenario, the large volume of acidified water should either be
treated,38,39 separated from water40−43 (upon separation, the
concentrated sulfuric acid can be sold as a byproduct at a market
price of ∼$200/tonne44), or directly used in combination with
other industrial processes. For example, diluted acid can be used
for hydrolysis to produce bioethanol.45

We then sintered a mixture of Ca(OH)2 and SiO2 clinker in a
3:1 molar ratio to prepare portland cement. The H2 co-
generated from the electrochemical unit contained sufficient
energy to fuel the subsequent sinter process (Note S2). We first
sintered the mixed clinker at 1200 °C to confirm the formation
of cement phases. After sintering the samples for 2 h at 1200 °C
in air, XRD confirmed a transformation into the belite
(Ca2SiO4) phase, a key phase (20−45% by mass of cement)
in portland cement (Figure 4a). Energy-dispersive X-ray

spectroscopy (EDS) mapping revealed that Ca and Si elements
are�to within the 1 nm resolution available using this
technique�distributed homogeneously within each phase.
The elemental ratio from EDS showed Ca:Si is 2:1 (Figure
S11a), consistent with belite (Figure 4a,b).

Further sintering to 1500 °C in air for 2 h resulted in belite
combining with CaO to form alite (Ca3SiO5, Figure 4c),46 the
most abundant phase in portland cement. The alite particles
produced from these precursors are 10−30 μm in size, in the
range employed in portland cement (photographs in Figures
S12 and S13). Ca2SiO4 and CaO were also detected in this
sample, consistent with Ca3SiO5 thermal decomposition below
1250 °C.47 EDS mapping and analysis of the elemental ratio
showed Ca and Si distributed in the alite phase and a Ca:Si ratio
of 3:1 (Figure 4d and Figure S11b) to within resolution limits.

We directly mixed limestone and SiO2 to prepare the clinker
under the same sintering condition (1500 °C) and found that
the main phases were CaO and belite (Figure S14). The phase
formation energy of alite was not reached since, relative to
Ca(OH)2, CaCO3 requires more energy to dehydrate to CaO.18

These results indicate that Ca(OH)2 may be a more efficient
feedstock for sintering than conventional CaCO3.

We carried out a technoeconomic analysis (TEA, Note S1) to
compare the cost of cement production using ECE to that of the
conventional approach. We found the ECE process using
limestone feedstock could produce cement at costs competitive
with conventional, carbon-intensive production methods
(Figure 5a). This cost comparison neglects the cost of carbon
capture and sequestration in current cement production, which
for amine scrubbing of conventional cement flue gas would add
on the order of $90 per tonne cement.14 We also include a TEA
for the gypsum operation without any cost/value associated with
downstream acid treatment and/or usage (Figure S15). The
TEA shows that the ECE process using gypsum feedstock can
produce cement at a cose competitive with the current market
price, provided the acidic electrolyte brings value. We performed
a life-cycle analysis (LCA) of the CO2 emissions to make 1 tonne
of cement, comparing the conventional thermal process with the
ECE process (Figure 5b). The total emissions from the ECE
process are dependent on the carbon intensity of the input
electricity (Figure S16). Assuming a carbon intensity at a
Canadian average (0.119 kg of CO2/kWh), the LCA shows that
cement production from the ECE process reduces CO2

Figure 5. Technoeconomic analysis, life cycle analysis, and system stability of the electrochemical calcium extraction process. (a) TEA of the
ECE process by using limestone as feedstock. TEA calculation details are provided in Note S1. (b) LCA of CO2 emissions for the conventional
thermal production process and the ECE process (with a cell voltage of 2.45 V and a current density of 200 mA/cm2) to produce 1 tonne of
cement. The carbon intensity of the electricity is 0.119 kg CO2/kWh. (c) System voltage of Ca(OH)2 synthesis by the ECE process over 13 h at
200 mA/cm2.
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emissions by 80% compared to the thermal process. Further
coupling the ECE process with an all-renewable electricity
source offers a 93% reduction in CO2 emissions compared to the
thermal process (Figure S16).

We investigated the system stability at 200 mA/cm2, during
which we periodically provided a fresh calcium source for the
Ca(OH)2 synthesis. Ca(OH)2 solids accumulate on membrane
surfaces can lead to reduced ion transport and voltage
degradation over time (Figure S17a). To address this issue, we
performed periodic cleaning in-operando with a wiper insert in
the electrolyzer (Figure S17b). With periodic in-operando
cleaning, the voltage recovered to and was stable at ∼2.8 V for
more than 13 h of continuous operation (Figure 5c). Post-
reaction analysis of the electrodes using SEM revealed no
structural changes of the IrO2-Ti felt and Pt-carbon surface
(Figure S18).

Here, we report an electrified cement production approach
based on anion-mediated electrochemical calcium extraction.
The in situ-generated acid is used to release CO2 embodied
within the feedstock, limestone at high purity, suitable for
downstream sequestration and utilization. The Ca(OH)2 and
H2 produced from the electrochemical unit can be used as
feedstock and fuel, respectively, to produce portland cement.
With this approach, we achieve a cell voltage of 2.8 V at 200 mA/
cm2, with a current efficiency of 93%. This corresponds to an
energy cost of 6.7 GJ/tonne cement. We further demonstrate
that the system can act on a carbon-free calcium feedstock,
gypsum, to eliminate feedstock emissions. TEA and LCA
indicate that the ECE process could produce portland cement at
prices competitive with the current cement market price and
with only 20% of emissions associated with the conventional
thermal process.
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