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ABSTRACT: Industrial water splitting pairs cathodic hydrogen
evolution with oxygen evolution at the anode, the latter generating
low-value oxygen as the oxidative product. We reasoned that replacing
the oxygen evolution reaction (OER) with anodic electrosynthesis of
acetic acid from ethanol at industrial current densities could be a route
to increase the economic efficiency of green hydrogen production. We
partition the selective oxidation of ethanol to acetic acid into two
mechanistically distinct transformations: first ethanol oxidation
followed by the production of *OH. Density functional theory (DFT)
studies show that the aldehyde-derived intermediate CH3CO* from
ethanol oxidation and the *OH radical from water dissociation are both
needed in the electroproduction of acetic acid. Operando Fourier
transform infrared (FTIR) spectroscopy identifies the corresponding
aldehyde intermediates on the anode surface. Based on these mechanistic findings, we develop a vacancy-rich IrRuOx catalyst
and achieve selective electrotransformation of ethanol to acetic acid at a generation rate of 30 mmol/cm2/h and a partial
current density of 3 A/cm2, fully 10× higher than in the previous highest-activity reports.

Hydrogen (H2) electroproduction is typically accom-
panied by the production of oxygen at the anode.
The more limited economic value of the oxygen (O2)

emerging from the oxygen evolution reaction (OER) suggests
opportunities to seek alternative anodic products that might
help to widen the adoption of low-carbon-intensity hydrogen.1

Alternative anodic reactions2−6 that generate higher-value
anodic products are thus of interest (Figure 1A). To date,
though, the productivity of these approaches has remained
below the ∼A/cm2 level required for application (Figure 1B).
Ethanol, a biomass feedstock with an annual production rate

of more than 77 million metric tons,7 has been researched in
depth in direct ethanol fuel cells (DEFCs) as a high energy
density material, in which 12 electron transfers occur per mole
of ethanol and CO2 is formed as the chemical product.8−11 We
aim here instead at valorizing ethanol, targeting its selective
electrooxidation, and minimizing undesired CO2 production.
We investigate ethanol oxidation toward the commodity

chemical acetic acid. At 15 million metric tons per year,12

acetic acid is used to produce paints, adhesives, solvents, and
plastics. Currently, acetic acid is manufactured via the
Monsanto process,13 a homogeneous rhodium-catalyzed
methanol carbonylation route which operates at high temper-

atures (150−200 °C) and pressures (3−10 MPa) (Figure S1)
and generates 1 ton of CO2 emissions per ton of acetic acid.12

Electrocatalytic approaches have been pursued in the
production of acetic acid (Figure 1C), including via ethanol
electrooxidation8,14,15 (Table S2), carbon dioxide reduction
(CO2R),

16−18 and carbon monoxide reduction (COR)19−23

(Figure 1C). Most recently, pairing H2 production and alcohol
oxidation14,24,25 has been advanced as a valorization strategy.
The anodic products improve electron utilization in a paired
system and benefit overall atomic economy in green H2
production (Figure 1C and Table S6).

To date, though, these approaches have been limited to
alkaline media, resulting in acetate salts that require an
additional protonation step to produce acetic acid. In general,
prior reports of the anodic oxidation of ethanol were operated
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in alkaline media and exhibited low current densities (<200
mA/cm2).14

We focused instead on seeking an anodic valorization of
ethanol that would couple readily to acidic PEM water
electrolysis. A technoeconomic analysis (Figure 1D and Table
S4) indicates the importance of striving for higher current
densities.

We initiated our studies by screening catalysts (Figure 2A)
in an approach that, to avoid the energy-intensive acetate
protonation step, employed 1 M sulfuric acid (H2SO4) as the
electrolyte. A set of transition metal and transition metal oxide
catalysts reported to be active in alcohol oxidation10,8,25−27

were loaded on titanium (Ti) felt and used as the anode.
Acetic acid was detected in the anolyte using 1H nuclear
magnetic resonance (NMR) spectroscopy (Figure S2).

Figure 1. Anodic oxidation of ethanol to acetic acid. (A) Schematic showing coupled electrochemical H2 and acetic acid production. (B)
Comparison of product concentration, faradaic efficiency, generation rate, stability, and current density for state-of-the-art alternative anodic
reactions.2−6 (C) Technoeconomic analysis (TEA) for electrosynthesis of acetic acid using anodic oxidation of ethanol in an acidic
electrolyte. The input chemicals and electricity cost make up the major cost in the plant-gate-levelized cost for the paired system. The
current market price represents the sum of the values of the market prices of 1 ton of acetic acid plus the H2 cogenerated per 1 ton of acetic
acid.

Figure 2. Proposed mechanism of electrocatalytic acetic acid production. (A) Catalyst screening for ethanol oxidation. (B) Schematic of the
proposed mechanism for high-rate acetic acid production on the anode. (C) DFT calculation for possible reaction pathways in ethanol
oxidation to CH3CO*. (D) Comparison of energy barriers for coupling of *OH from the OER and ethanol dissociation. (E) Operando IR
spectroscopy for acetic acid production on the IrO2 catalyst under different potentials versus Ag/AgCl in 5 M EtOH and 1 M H2SO4
electrolyte.
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Figure 3. Electrochemical performance. (A) Electroproduction of acetic acid and ethyl acetate with different ethanol concentrations. (B)
EDS and (C) TEM images reveal the distribution of Ir, Ru, and O on the IrRuOx/Ti felt catalyst. (D) XPS fitting of Ir 4f and O 1s shows the
surface vacancies of the IrRuOx catalyst.
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Transition metal catalysts with demonstrated activity for
alcohol oxidation at low current densities (<50 mA/cm2),
such as cobalt oxide, nickel oxide, palladium oxide, and
platinum oxide, were tested at 200 mA/cm2 but lacked both
faradaic efficiency and stability (Figure S3 and Table S3).
We observed encouraging acetic acid generation and good

durability using iridium oxide and ruthenium oxide anodes
with 42% and 49% FE, respectively, at 200 mA/cm2. In
particular, the IrO2 catalyst produced acetic acid continuously
for more than 50 h.
We investigated the catalytic mechanism, building on

previous studies28 that suggested the coupling of surface-
absorbed aldehydes and hydroxides is a key step in delivering
carboxylic acids. However, we observed the limited presence of
the required hydroxide, something we attributed to operating
at high current densities in an acidic electrolyte.29 We sought
approaches that would catalyze, sequentially, these two steps
(Figure 2B): alcohol oxidation to generate aldehyde and water-
splitting to form hydroxide.30 This, we posited, would ensure
the selective ethanol oxidation to acetic acid and would
suppress the OER simultaneously. We focused on a study of
IrO2 to test these ideas.
Using density functional theory (DFT), we studied the

reaction mechanism on the O-terminated surface of IrO2(110)
(Figures S9−S11). The overall reaction pathway can be
divided into two stages: an ethanol dehydrogenation stage and
an *OH coupling stage. In the dehydrogenation stage, the
dehydrogenation of ethanol to generate CH3CO* has several
possible routes that go through distinct intermediates (Figure
2C). O−H cleavage of the oxygen atom to form CH3CH2O* is
the most energetically favored pathway, with an energy barrier
of 0.11 eV. Thereafter, the second dehydrogenation
intermediate CH3CHO* is obtained by breaking the C−H
bond, overcoming an energy barrier of 0.97 eV, which is the
rate-determining step in the dehydrogenation process. The
acetaldehyde intermediate CH3CHO* is further dehydrogen-
ated into CH3CO* with an energy barrier of 0.20 eV and
concludes the first stage. In the second stage, the CH3CO*
intermediate reacts with *OH and forms the target product,
acetic acid (Figure 2D). We found that the CH3CO* species
prefer to couple with *OH radicals generated from the
dissociation of water with an energy barrier of 1.78 eV while
reacting with the *OH generated from the dehydrogenation of
ethanol presents a higher energy barrier of 2.14 eV. The DFT
studies agree with the idea that the aldehyde-derived
intermediate CH3CO* and the generation of *OH radicals
from the dissociation of water together facilitate acetic acid
electroproduction.
Experimentally, we first introduced the postulated inter-

mediate CH3CHO* by conducting acetaldehyde oxidation on
IrO2/Ti. An acetic acid FE of 90% was achieved at an industrial
water-splitting current density of 1 A/cm2 (Figure S4). To
check for experimental signals of aldehyde intermediates, we
conducted operando IR spectroscopy measurements during
ethanol oxidation (Figure 2E and Figure S5A). Electro-
chemical in situ IR spectroscopy was performed under positive
potentials from 0.3 to 1.3 V versus Ag/AgCl. No band for CO2
formation8 was detected at 2343 cm−1. The absence of CO2
evolution was further confirmed by gas-phase chromatography,
indicating that reactant ethanol is selectively oxidized to the
desired acetic acid. The characteristic bands found at 939 cm−1

are suggestive of the surface formation of acetaldehyde,9,31 an
intermediate formed from ethanol oxidation, one whose signal

increased notably with increasing potential. This, as noted
above, sets the stage for coupling to the generated *OH
radicals. We conducted 18O isotope-labeled experiments using
H2

18O to ascertain whether coupling implicated *OH species
generated from the dissociation of water. We found evidence of
CH3CO18OH in direct analysis real-time mass spectrometry
(DART-MS) (Figure S5B), in agreement with the mechanistic
picture presented above.

We conducted electrooxidation of ethanol at 1 A/cm2 using
different ethanol concentrations, and rather than observing a
dependence on applied current or reaction potential, we found
instead that ethyl acetate production increased with ethanol
concentration (Figure 3A); this finding is consistent with the
idea that ethyl acetate is formed by facile esterification between
ethanol and the anodic oxidation product acetic acid (eqs
1−4).

Ethyl acetate formation can be reduced by lowering the
ethanol concentration or by removing the acetic acid from the
electrolyte. The ethyl acetate formed can serve as an
azeotroping agent13 in the separation of acetic acid from the
aqueous phase:

+ + ++
Anode:

CH CH OH H O CH COOH 4H 4e3 2 2 3 (1)

++Cathode: 2H 2e H2 (2)

+ +Overall: CH CH OH H O CH COOH 2H3 2 2 3 2 (3)

+ +F

Esterification:
CH CH OH CH COOH CH CH OOCCH H O3 2 3 3 2 3 2

(4)

Even at the optimal EtOH concentration, the electrochemical
performance of IrO2 displays low acetic acid FE and high full
cell potential that hinder its economic feasibility (Figure S6).

Based on the above mechanistic findings, we turned to
improved working electrode designs. With the goal of further
increasing surface-generated aldehyde and hydroxy species, we
developed a vacancy-rich32 IrRuOx on Ti felt anode, a catalyst
formed with the aid of Zn doping and ensuing chemical
etching.33 We looked at the catalyst structure, finding with
TEM (Figure 3C) that IrRuOx nanoparticles were homoge-
neously dispersed on the Ti felt after the thermal
decomposition process.34 A uniform distribution of Ir, Ru,
and O on the Ti support is seen in energy dispersive
spectroscopy (EDS) (Figure 3B). To investigate whether
vacancies were generated after chemical etching, we prepared a
control catalyst, IrRuOx, using a method the same in all
respects except that we added no Zn and did not complete any
further etching. X-ray photoelectron spectroscopy (XPS)
characterization (Figure 3D and Figure S7) was applied to
IrO2, IrRuOx, and nondefect IrRuOx. Deconvolution of O 1s
XPS profiles shows peaks for lattice oxygen, surface hydroxyl,
and defect sites with a low oxygen coordination at 530.1, 532.2,
and 530.9 eV, respectively.32,35,36 The low oxygen coordination
peak area in IrRuOx is 34.7%, which is higher than that of
nondefective IrRuOx (27.6%), indicating an increase in oxygen
vacancy.32 The deconvolved peaks of Ir 4f spectra with IrIII and
IrIV states are also shown in Figure 3D. The defective IrRuOx
has the higher IrIII, species compared with nondefective
IrRuOx, which is consistent with the generation of more
vacancies on the defective RuIrOx.

37,38 Linear sweep
voltammetry (LSV) (Figure 4A) revealed that the potential
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of IrRuOx at 20 mA/cm2 was ∼230 mV lower than IrO2 and
∼180 mV lower than nondefective IrRuOx. Cyclic voltammetry
(CV) experiments (Figure 4B) showed a broad oxidation curve
of acetic acid at around 1.5 V versus SCE in 0.5 M H2SO4 and
5 M ethanol solution.
We then explored strategies to operate the acetic acid

production at high current densities that can be readily
coupled with an industrial hydrogen generation reaction
(Figure 4C). We achieved 5 A/cm2 anodic acetic acid
synthesis, a 13× higher generation rate than in the prior
highest-productivity reports.23 At 1 A/cm2 over 12 h, we
obtained a 14 wt % concentration of acetic acid (Figure S8). At
5 A/cm2 (Table S5) and using 1 cm2 electrolyzer surface area,
we achieved gram-scale (1.75 g/cm2/h) electrosynthesis of
acetic acid in under 1 h (Figure 4D).
Gas-phase chromatography indicates that the remaining

charge can be accounted for via the conversion of the OER to
O2. No other oxidation products were found. No CO2 was
detected within the limits of detection in gas-phase analysis, in
agreement with our in situ IR finding that ethanol oxidation is
selective toward acetic acid production.
We probed the stability of the IrRuOx/Ti anode during the

oxidative production of acetic acid at 1 A/cm2. It maintained
an average acetate (acetic acid and ethyl acetate) FE of 62%
over the course of 40 h of continuous electrosynthesis in the
MEA (Figure 4E) at no more than 3.25 V full cell potential,
which is decreased by over 450 mV compared to the IrO2/Ti
anode. A portion of the electrolyte was periodically removed to
analyze the composition and replaced with fresh electrolyte
during the stability test.

This work reports the electrosynthesis of acetic acid at
current densities of interest in H2 coproduction. Instead of
suppressing the O2 evolution side reaction, this approach relies
on both ethanol oxidation and water splitting from the OER.
An acetic acid FE of 59−68% along with 8−11% FE toward
ethyl acetate at ampere-level current densities was achieved
using this strategy. With mechanistic insights provided by DFT
and in situ spectroscopies, a direct anodic upgrading strategy at
record production rates was developed. This method of acetic
acid electrosynthesis operates continuously with a full cell
voltage of less than 3.25 V at 1 A/cm2 with an average acetate
FE of 62%. This work provides a strategy for designing other
electrooxidation reactions with a high current efficiency and
indicates a route to decarbonization in the H2 production
industry. Further advances can be achieved through new
catalyst and system design to achieve increased energy
efficiency, as well as the search for durable, cost-effective,
and PGM-free metal catalysts. Additionally, coelectrolysis39,40

of CO2 reduction at the cathode and ethanol oxidation at the
anode produces acetic acid on both sides of the electrolyzer
and holds potential to further increase the energy efficiency
and carbon utilization in electrochemical acetic acid
production.
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