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Temperature-adjustable optical properties of two types of one-dimensional photonic superlattices made from
lithium niobate or liquid crystal are theoretically investigated. The control of band structures and density of states
is achieved through the temperature with various values of refractive index, layer width, and propagation wave-
length. It is presented that a null photonic gap appears at certain temperature points, which are decided by the ratio
of layer width and the refractive index. It is shown that the spatial average of the wave vector 〈k〉 vanishes at a specific
temperature as functions of the layer thickness and refractive index. The values of the temperature corresponding to
zero-refractive-index (zero-〈n〉) are demonstrated to be suppressed when the refractive index or the ratio of the layer
width is enhanced. Null photonic gap and zero-〈n〉 can appear simultaneously at certain wavelengths in the range
of visible light, which can be modulated by the temperature. This implies the importance of one-dimensional pho-
tonic superlattices made from temperature-controllable-refractive-index materials for many important practical
applications. ©2020Optical Society of America

https://doi.org/10.1364/JOSAB.384702

1. INTRODUCTION

A great deal of attention has been paid to the study of
temperature-controllable-refractive-index materials [1–14],
given that the refractive index is an important parameter in
optics. The properties associated with the tunable refractive
index presented in these materials are attractive for making
adjustable-focus lenses, prism gratings, spatial light modulators,
and other adaptive photonic devices [15–25].

Artificial optical waveguides have been an interesting research
subject if one considers their properties and potential techno-
logical applications in a wide range of optical devices, including
a zero-refractive-index (zero-〈n〉) gap [15], discrete and photon
tunneling modes [16], spontaneous photon production [17],
dipole-dipole interactions [18], and large optical nonlinearity
[19]. All these studies are based on an environment with fixed
temperature and are focused on the use of left-handed materials

whose physical parameters ε and µ are very dispersive. We
believe that these waveguide structures, although of great scien-
tific and technological interest on their own, do not provide the
flexibility in using tunable waveguides.

A question may arise: can we introduce more dispersive values
of the refractive index through the modulation of the temper-
ature and therefore modify the band structures? After all, the
manipulation of the temperature is seemingly convenient to be
done in a modern lab considering the easy access of commercial
furnaces and refrigerators.

Let us speculate: when the temperature is changing, there
may be a critical value of the refractive index existing that can
make the corresponding photonic structure resonant. At this
critical refractive index associated with the temperature, the
interaction between radiation field and photonic structure may
be strong enough, and the wave inside the waveguide could
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correspond to a coupled mode contributing the whole material
system. Such a coupling may impact the propagation of the
radiation field in a very profound manner and give rise to novel
effects.

For further practical applications of superlattices made from
temperature-controllable-refractive-index materials, it is impor-
tant to know how the band structures, density of states, and null
photonic gap vary according to temperature. It is also important
to understand how varying geometrical parameters of the super-
lattices can affect the photonic properties with the combination
of temperature.

Another problem that captivates our research interest is con-
trolling the zero-〈n〉 [26–30]. Since the beginning of optical
material study, the optical properties of media with a refrac-
tive index near zero have attracted the interest of the scientific
community. It can be noted that1n =1ε/(2ε0.5), [30] where
1n is the change of the refractive index, 1ε is the change of
permittivity, and ε is the permittivity. One may find out when
the permittivity is approaching zero that tremendous variation
of the refractive index can appear, suggesting that the materials
at that near-zero-〈n〉 point should show strong nonlinear optical
properties. This is the reason why zero-〈n〉 is so important. In a
material system possessing a temperature-controllable refractive
index, we are curious about how zero-〈n〉 can be developed
along with adjusting the temperature. We are urged to find out
at what critical temperature point zero-〈n〉 can arise and how
this critical temperature would be impacted.

This motivates us to study how the temperature affects the
band structures, density of the states, null photonic gap and
zero-〈n〉 in photonic superlattices, which, up to now, have not
been addressed in previous studies to our knowledge.

Here two material systems corresponding to two types
of temperature-controllable-refractive-index materials (i.e.
lithium niobate and liquid crystal) are studied. A detailed study
of the temperature-directed band structures and density of
the states, along with the change of refractive index, material
width, and propagation wavelength is presented. The values of
temperature corresponding to the null gap can be adjusted by
the layer width ratio and refractive index.

The temperature condition when zero-〈n〉 appears is investi-
gated. The propagation wavelength associated with concurrence
of the zero-〈n〉 and null gap is found to be controllable by the
temperature.

The paper is organized as follows. In Section 2, the theoretical
approach is detailed. Section 3 is concerned with results and dis-
cussion. Finally, our conclusions are provided in Section 4.

2. THEORETICAL MODEL

A. Theoretical Model of Dispersion Equation in a 1D
Photonic Superlattice

A 1D photonic superlattice in the z direction, i.e., a periodic
photonic heterostructure composed of alternating layers of
different layer materials, is proposed. The origin is located at the
center of a first slab (with dielectric constant ε1 and magnetic
permeabilityµ1) of width a1 with period a = a1 + a2, where a2

is the slab width of the second material (with dielectric constant
ε2 and magnetic permeability µ2). For simplicity, the analysis

is restricted to electromagnetic (EM) plane waves. The propa-
gation of EM waves is considered to be along the z axis of the
superlattice. Its form is given by

→

E (z, t)= E (z)e−iωt ∧x . (1)

By using Maxwell’s equations for linear and isotropic media,
[31,32] the amplitude E (z) of the electric field can be derived as

d
dz

[
1

n(z)Z (z)
d E
dz

]
=−

n(z)
Z(z)

ω2

c 2
E , (2)

where n(z)= ε(z)1/2µ(z)1/2 and Z(z)=µ(z)1/2/ε(z)1/2 are
the refraction index and impedance with respect to each layer
material. Equation (2) can be solved as

E (z)= c 1 cos[k(z− zo )+
c 2

k
sin[k(z− z0)], (3)

where z0 represents the position of an arbitrary point in each
layer and k =ωn/c . For simple calculation, a function of

ϕ(z)=
[

E (z)
1

nZ
d E
dz

]
(4)

is introduced. It satisfies

ϕ(z)= TTϕ(z0), (5)

where TT is a 2 × 2 transfer matrix expressed as

TT =

[
cos[k(z− z0)]

nZ
k sin[k(z− z0)]

−
k

nZ sin[k(z− z0)] cos[k(z− z0)]

]

andϕ(z0) is defined as

ϕ(z0)=

[
E (z0)

1
nZ (

∂E
∂z )z=z0

]
.

For z= (a1 + a2)/2 and z0 = 0, Eq. (5) can be derived as

ϕ

(
a1 + a2

2

)
= TT

(a1

2
,

a2

2

)
ϕ(0). (6)

TT( a1
2 ,

a2
2 ) satisfies the following:

TT
(a1

2
,

a2

2

)
= TT2

(a2

2

)
TT1

(a1

2

)
, (7)

where TT2(a2/2) and TT1(a1/2) are written as

TT2

(a2

2

)
=

[
cos

( k2a2
2

) n2 Z2
k2

sin
( a2k2

2

)
−

k2
n2 Z2

sin
( a2k2

2

)
cos

( a2k2
2

) ]
, (8)

TT1

(a1

2

)
=

[
cos

( k1a1
2

) Z1n1
k1

sin
( a1k1

2

)
−

k1
n1 Z1

sin
( a1k1

2

)
cos

( a1k1
2

) ]
. (9)

It is supposed that TT
( a1

2 ,
a2
2

)
=

[
TT1 TT2
TT3 TT4

]
. Using

Eq. (7), the elements of the matrix TT( a1
2 ,

a2
2 ) can be derived as
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TT1= cos

(
a2k2

2

)
cos

(
a1k1

2

)

−
Z2n2k1

Z1n1k2
sin

(
k2a2

2

)
sin

(
k1a1

2

)
, (10)

TT2=
Z1n1

k1
cos(

a2k2

2
) sin(

a1k1

2
)

+
Z2n2

k2
sin

(
k2a2

2

)
cos

(
k1a1

2

)
, (11)

TT3=−
k2

Z2n2
sin(

a2k2

2
) cos(

a1k1

2
)

−
k1

Z1n1
cos

(
k2a2

2

)
sin

(
k1a1

2

)
, (12)

TT4= cos

(
a2k2

2

)
cos

(
a1k1

2

)

−
Z1n1k2

Z2n2k1
sin

(
k2a2

2

)
sin

(
k1a1

2

)
. (13)

If the equations of

ϕ

(
−

a1 + a2

2

)
= TT

(
−

a1

2
,−

a2

2

)
ϕ(0) (14)

and

TT
(
−

a1

2
,−

a2

2

)
= TT2

(
−

a2

2

)
TT1

(
−

a1

2

)
(15)

are considered, one may obtain

TT
(
−

a1

2
,−

a2

2

)
=

[
TT1 −TT2
−TT3 TT4

]
. (16)

If the Bloch condition

ϕ(z+ a)= e iqaϕ(z) (17)

is considered, then it can be derived that

ϕ

(
a1 + a2

2

)
= ϕ

(
a −

a1 + a2

2

)
= e iqaϕ

(
−

a1 + a2

2

)
,

(18)

where q is located in the Brillouin zone of the photonic
superlattice with respect to −mπ ≤ q(a1 + a2)≤mπ
(m = 1, 2, 3, 4, . . .).

Using Eqs. (6), (14) and (18), it becomes

ϕ

(
a1 + a2

2

)
=

[
TT1 TT2
TT3 TT4

]
ϕ(0)

= e iqa
[

TT1 −TT2
−TT3 TT4

]
ϕ(0)

= e iqaϕ

(
−

a1 + a2

2

)
, (19)

which can be further generated as

[
TT1(1− e iqa) TT2(1+ e iqa)

TT3(1+ e iqa) TT4(1− e iqa)

]
ϕ(0)= 0. (20)

To solve this secular equation, it should be satisfied that

TT1TT4(1− e iqa)2 = TT2TT3(1+ e iqa)2. (21)

From Eqs. (10)–(13), it can be derived that

TT1TT4− TT2TT3= 1. (22)

Substituting Eq. (22) into Eq. (21), the following equations
can be obtained:

TT2TT3=
cos(qa)− 1

2
, (23)

TT1TT4=
cos(qa)+ 1

2
, (24)

q =
1

a
arccos(2TT1TT4− 1). (25)

Substituting Eqs. (10)–(13) into Eq. (25), we are able to gen-
erate that

q =
1

a
arccos(u), (26)

where u takes the form

u = 2cos2

(
a2k2

2

)
cos2

(
a1k1

2

)
−

1

2

(
Z1n1k2

Z2n2k1
−

Z2n2k1

Z1n1k2

)

sin(a1k1) sin(a2k2)+ 2sin2

(
a2k2

2

)
sin2

(
a1k1

2

)
− 1.

(27)

The q -space volume is considered to be occupied by each
wave vector point V/(2π)3. The number of modes N covering
frequencies from f to d f is given by

N = Ddω=
[

V

(2π)3

] ∫
dhdS, (28)

where dh is the small thickness and d S is the small area.
Considering the block wave confined in 1D space with unit

area leads to the equation:

N( f )=
L

2π

∫
dh ≈

Lq
2π

. (29)

The density of the states can be derived as

D( f )=
L

4π2

∂q
∂ f

. (30)

B. Lithium-Niobate-Based 1D Superlattices

In this case, the material in one layer is supposed to be lithium
niobate, whose refractive index n2 can be defined by [33]

n2 =

√
4.913+

0.0165T2 + 117300

λ2 − (212+ 2.7× 10−5T2)
2 − 2.78× 10−8λ2,

(31)
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whereλ is wavelength.
It can be noted that k1 = 2π f n1/c and k2 = 2π f n2/c . In

order to calculate the density of states via Eq. (27), the forms of
∂n2
∂ f , ∂k1

∂ f , and ∂k2
∂ f have to be obtained.

Their derivation of the frequency can be obtained:

∂n2

∂ f
=

1

2

[
4.913+

0.0165T2 f 2
+ 117300 f 2

c 2 − f 2(212+ 2.7× 10−5T2)
2 − 2.78

× 10−8 c 2

f 2

]− 1
2
{

(−0.033T2
− 234600)c 2 f

[c 2 − (212+ 2.7× 10−5T2)
2 f 2]

2

+5.56× 10−8c 2 f −3

}
, (32)

∂k1

∂ f
=

2πn1

c
, (33)

∂k2

∂ f
=

2πn2

c
+

2π f
c

∂n2

∂ f
. (34)

Using Eq. (30), the density of states D can be found:

D=
L

4π2a [1− (2TT1TT4− 1)2]
1/2

∂u
∂ f

. (35)

∂u
∂ f can be obtained:

∂u
∂ f
=
∂u1

∂ f
−

sin(a1k1) sin(a2k2)

2

∂u2

∂ f
−

u2

2

∂u3

∂ f
+
∂u4

∂ f
,

(36)

u1, u2, u3, and u4 are defined in the following forms:

u1 = 2cos2

(
a2k2

2

)
cos2

(
a1k1

2

)
, (37)

u2 =
Z1n1k2

Z2n2k1
−

Z2n2k1

Z1n1k2
, (38)

u3 = sin(a1k1) sin(a2k2), (39)

u4 = 2sin2

(
a2k2

2

)
sin2

(
a1k1

2

)
. (40)

Their derivation is given by

∂u1

∂ f
=−a2 sin(a2k2)cos2

(
a1k1

2

)
∂k2

∂ f
cos2

(
a1k1

2

)

− a1
∂k1

∂ f
cos2

(
a2k2

2

)
sin(a1k1), (41)

∂u2

∂ f
=

Z1n1

Z2n2k1

∂k2

∂ f
−

Z1n1k2

Z2
(n2k1)

−2

(
k1
∂n2

∂ f
+ n2

∂k1

∂ f

)

−
Z2k1

Z1n1k2

∂n2

∂ f
−

Z2n2

Z1n1

[
1

k2

∂k1

∂ f
− k1k2

−2 ∂k2

∂ f

]
,

(42)

∂u3

∂ f
= a1

∂k1

∂ f
cos(a1k1) sin(a2k2)

+ a2
∂k2

∂ f
sin(a1k1) cos(a2k2), (43)

∂u4

∂ f
= 2a2 cos

(
a2k2

2

)
sin2

(
a1k1

2

)

+ 2a1
∂k1

∂ f
sin2

(
a2k2

2

)
cos

(
a1k1

2

)
, (44)

∂u
∂ f
=
∂u1

∂ f
−

sin(a1k1) sin(a2k2)

2

∂u2

∂ f

−
u2

2

∂u3

∂ f
+
∂u4

∂ f
. (45)

C. Liquid-Crystal-Based Superlattices

In this case, the material in one layer is supposed to be liquid
crystal, whose refractive index n3 can be defined by [34]

n3 = A− T B . (46)

T is the temperature. A and B are constants given by the fol-
lowing forms:

A=
7

2
√

10
+

2
√

10

5

NAπ 〈α〉 A′

M
, (47)

B =
2
√

10

5

NAπ 〈α〉 B ′

M
, (48)

where 〈α〉 is average polarizability, M is molecular weight, NA

is Avogadro’s number, and A′ and B ′ are the constants given by
the liquid crystal. The calculation of density of states is similar to
that in Eqs. (31)–(45).

D. Zero-〈n〉 Condition

In this section, it should be pointed out that the zero-〈n〉
condition [26–30], which stresses the existence of a zero-
average-refractive-index gap in a photonic system, may be
conveniently extended in order to find out the critical tem-
perature associated with this gap. In fact, one may derive
that

〈k〉 =
1

a1 + a2

∫ l

0
k(T)dl

=
1

a1 + a2
[a1k1(T)− a2k2(T)] = 0, (49)

where k is the wave vector and T is the value of the temperature
when the spatial average wave vector value is zero. This equation
illustrates that the temperature at which the spatial average wave
vector, taken over a period of the photonic structure, vanishes.
At this critical temperature, the corresponding effect of zero-〈n〉
appears.
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For a photonic structure that contains lithium niobate, by
combing Eqs. (31) and (49), the critical temperature point can
be solved.

In order to calculate the critical temperature, one may
suppose that

X 1 =

(
a1

2n1
2

a2
2
+ 2.78× 10−8 c 2

f 2
− 4.91

)
, (50)

T2 =

√
14.58× 10−10 X 1, (51)

T3 = (0.01X 1 + 0.02)2 − 29.16× 10−10

X 1

(
X 1c 2

f 2
− X 144944− 117300

)
, (52)

T1 =

√
−(0.01X 1 + 0.02)+

√
T3. (53)

The corresponding temperature Tc 1 can be expressed as

Tc 1 = T1/T2. (54)

For a photonic structure that contains liquid crystals, the tem-
perature can be derived through Eqs. (46) and (49) as

Tc 2 =
(A− a1n1/a2)

B
. (55)

As can be seen from Eqs. (50)–(55), the refractive index (n1)
and layer width ratio (a1/a2) can be used to calculate the value of
the temperature such that 〈n〉 vanishes.

E. Null-Gap Condition

From Eqs. (23), (24), it can be noted that the extrema of the pho-
tonic band can be generated from the choice that cos(qa)= 1 or
cos(qa)=−1. When the condition of cos(qa)= 1 is satisfied,
it can be derived that TT2= 0 or TT3= 0. When the choice
of cos(qa)=−1 is made, it can be generated that TT1= 0 or
TT4= 0. At those values of the temperature, the bands vanish.
If one considers that TT2= TT3= 0 or TT1= TT4= 0, it
implies the touching of the bands.

We select the condition TT2= TT3= 0 for calculation of
the values of the temperature corresponding to the null gap.

From the equation TT2= TT3= 0, we are able to
derive the following: sin(a2k2/2)= 0 and sin(a1k1/2)= 0.
Therefore, a2k2/2= N2π , a1k1/2= N1π . Here N1 and
N2 satisfy N1 = . . . ,−3π,−2π,−π, π, 2π, 3π, .. . and
N2 = . . . ,−3π,−2π,−π, π, 2π, 3π, .. .. Zero values of N1

and N2 are ignored for simple calculation. It can be noted that
k1 =ωn1/c , k2 =ωn2/c .

For the superlattices based on lithium niobate or liquid crys-
tal, it can be obtained that

n2 = a1n1 N2/a2/N1, (56)

n3 = a1n1 N3/a2/N1, (57)

where N3 = . . . ,−3π,−2π,−π, π, 2π, 3π, .. ..

Based on Eqs. (56), (57), (31), and (46), the values of the tem-
perature corresponding to the null gap of the superlattices can be
written as

Tng 1 =

√
(t2 ±

√
t22 − 29.16× 10−10t1t3)
14.58× 10−10t1

, (58)

Tng 2 =
A
B
−

a1n1 N3

a2 N1 B
, (59)

where Tng 1 is the temperature associated with the null gap for
the lithium-niobate-based superlattices and Tng 2 is for the
liquid-crystal-based superlattices; t1, t2, and t3 respectively take
the forms

t1 =
a1

2n1
2 N2

a2
2 N1

2

2

− 4.91+ 2.78× 10−8λ2, (60)

t2 = 0.12+ 1144.8t1 × 10−5, (61)

t3 = t1λ2
− 44944t1 − 117300. (62)

A moment’s thought about Eqs. (58)–(62) implies that the
values of the temperature corresponding to the null gap (Tng 1

and Tng 2) can be determined by the refractive index (n1) and the
ratio of the layer width (a1/a2).

F. Concurrence of Zero-〈n〉 and Null Gap

From Eq. (49), it can be derived that the occurrence of the zero-
〈n〉 for the lithium-niobate-based superlattices is associated with
the condition of a1n1 = a2n2.

From Section 2.D, it can be obtained that the null gap
happens when a1n1 N2 = a2n2 N1 is satisfied.

Therefore, the concurrence of zero-〈n〉 and null gap for the
lithium-niobate-based superlattices implies that a1n1 = a2n2

and N2 = N1. For the liquid-crystal-based superlattices, this
indicates that a1n1 = a2n3 and N3 = N1.

We are interested in the study of optical waves or electro-
magnetic waves with high frequency, at which the zero-〈n〉 and
null gap can happen simultaneously. With this consideration,
Eq. (31) can be simplified as

n2 =

√
4.913−

0.0165T2 + 117300

(212+ 2.7× 10−5T2)
2 . (63)

Using the equations of k2 =ωn2/c , a2k2/2= N2π , it can be
derived that the propagation wavelength with respect to the con-
currence of zero-〈n〉 and null gap in the lithium-niobate-based
superlattices satisfies

λ2 = a2n2/N2. (64)

Substituting Eq. (63) into Eq. (64), it can be written that

λ2 =
a2

N2

√
4.913−

0.0165T2 + 117300

(212+ 2.7× 10−5T2)
2 . (65)

Similarly, the propagation wavelength with respect to the
concurrence of zero-〈n〉 and null gap in the liquid-crystal-based
superlattices can be obtained as
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λ3 =
a2

N3
(A− T B). (66)

Equations (65) and (66) give the explicit expressions of λ2

and λ3 in terms of temperature. Again, this indicates that the
temperature can impact the concurrence of zero-〈n〉 and null
gap.

3. RESULTS AND DISCUSSION

Our numerical calculations are focused on two types of 1D
photonic superlattices. The first one is based on a medium
A with the refractive index n1 and a medium B made from
lithium niobate (ABABABAB. . . stack). The second one is
based on medium A and a medium C made fromliquid crystal
(ACACACAC. . . stack). In this section, explicit discussions on
band structure, density of states, and concurrence of zero-〈n〉
and null gap for them in terms of temperature are presented.

A. Band Structures and Density of States of
Lithium-Niobate-Based Superlattices

The photonic band structures of a 1D superlattice based on
lithium niobate of period a are displayed in Fig. 1 for various
refractive indices of the layer, illustrating the presence of gaps in
the band structures. In the temperature range around 0–250 K,
the dispersion curves are close for n1 = 0.5. When n1 = 1.5, the
dispersion curves start to open. They suggest that the dispersion
curves are open with higher refractive index. Figure 2 depicts the
results of the corresponding photon density of states (DOS).
For n1 = 0.5, the values of DOS are around 0–3; for n1 = 1.5,
the values of DOS are around 0–4; for n1 = 3.5, the values of
DOS are around 0–10. These results illustrate that, for greater

refractive index, the corresponding dispersion curves become
more scattered and the photon density of states is greater.

It can be noted that for n1 = 0.5, qa shows the zeroth values
attemperatures around 33 K, 276 K, 287 K, 397 K, 408 K,
498 K, and 578 K [Fig. 1(a)]. The curves of the DOS show
sharp peaks at temperatures around 30 K, 184 K, 205 K,
273 K, 288 K, 342 K, 352 K, 398 K, 409 K, 448 K, 456 K,
491 K, 501 K, 533 K, 543 K, 575 K, and 580 K [Fig. 2(a)]. For
n1 = 1.5, qa becomes zero at temperatures around 247 K,
281 K, 380 K, 402 K, 477 K, 496 K, 560 K, and 577 K
[Fig. 1(b)]. The peak values of DOS are presented at several
temperature points of 144 K, 192 K, 247 K, 279 K, 320 K,
345 K, 378 K, 402 K, 431 K, 450 K, 478 K, 494 K, 520 K,
537 K, 561 K, 576 K, and 597 K [Fig. 2(b)]. For n1 = 3.5, qa
becomes zero at temperatures around 219 K, 248 K, 360 K,
379 K, 463 K, 478 K, 547 K, and 562 K [Fig. 1(c)]. The DOS
has maxima values at 86 K, 144 K, 219 K, 247 K, 298 K, 320 K,
358 K, 381 K, 413 K, 431 K, 462 K, 478 K, 508 K, 521 K,
547 K, 561 K, 584 K, and 600 K [Fig. 2(c)].

The modifications introduced in the photonic band struc-
tures and photon density of states, when different layer widths
are used, are illustrated in Figs. 3 and 4.

Figure 3(a) reveals that the values of qa become zero at
the temperature of 592 K with a2 = 2.185 µm. Figure 3(b)
illustrates a few sets of dispersion curves. Moreover, the values
of qa become null at the temperatures of 153 K, 380 K, and
518 K. Figure 3(c) shows very dense sets of data curves with
a2 = 50 µm. It can be seen that qa shows zeroth values at tem-
peratures of 153 K, 218 K, 267 K, 308 K, 345 K, 378 K, 409 K,
437 K, 465 K, 491 K, 516 K, 538 K, 562 K, and 584 K.

In Fig. 4(a), the DOS curves show one distinct peak around
257 K. In Fig. 4(b), the DOS curves illustrate three distinct

Fig. 1. Temperature-adjustable band structure of lithium-niobate-based superlattices with different layer refractive indices: (a) n1 = 0.5, (b) n1 =

1.5, (c) n1 = 3.5.

Fig. 2. Temperature-adjustable density of states of lithium-niobate-based superlattices with different layer refractive indices: (a) n1 = 0.5, (b) n1 =

1.5, (c) n1 = 3.5.
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Fig. 3. Temperature-adjustable band structure of lithium-niobate-based superlattices with different layer thicknesses: (a) a2 = 2.185 µm, (b) a2 =

10 µm, (c) a2 = 50 µm.

peaks at 285 K, 451 K, and 574 K. In Fig. 4(c), the DOS curves
reveal several peaks around 105 K, 187 K, 243 K, 287 K, 327 K,
360 K, 393 K, 424 K, 452 K, 478 K, 505 K, 527 K, 551 K,
574 K, and 595 K.

One clearly sees that, for narrower layers, the corresponding
dispersion curves and photonic density of states become fewer
and more scattered.

It is interesting to find out the impact of propagation wave-
length on the photonic band structures and photon density of
states in Figs. 5 and 6.

When the propagation wavelength λ is equal to 350 nm,
the zeroth values of qa appear at temperatures around 155 K,
252 K, 320 K, 379 K, 431 K, 476 K, 516 K, 556 K, and 594 K
[Fig. 5(a)]. The peak values of DOS are shown at temperatures
around 61 K, 207 K, 287 K, 352 K, 404 K, 452 K, 495 K, 537 K,
and 575 K [Fig. 6(a)].

For λ= 532 nm, the zeroth values of qa are presented at
temperatures around 36 K, 215 K, 250 K, 328 K, 350 K, 413 K,
430 K, 483 K, 498 K, 546 K, 558 K, and 596 K [Fig. 5(b)]. The
peak values of DOS are shown at temperatures around 35 K,

134 K, 177 K, 219 K, 248 K, 281 K, 304 K, 329 K, 350 K,
373 K, 392 K, 412 K, 431 K, 448 K, 467 K, 483 K, 496 K,
514 K, 529 K, 544 K, 556 K, 573 K, and 587 K [Fig. 6(b)].

For λ= 1064 nm, the zeroth values of qa are revealed at
temperatures around 43 K, 322 K, 352 K, 477 K, 498 K, and
594 K [Fig. 5(c)]. The peak values of DOS are presented at
temperatures around 43 K, 207 K, 250 K, 322 K, 350 K, 406 K,
429 K, 476 K, 498 K, 538 K, 557 K, and 595 K [Fig. 6(c)].
Comparison of Figs. 5(a)–5(c) clearly shows that the dispersion
curves become sparser for the longer propagation wavelength.

B. Band Structure and Density of States of
Liquid-Crystal-Based Superlattices

The variation of refractive index, layer width, and propaga-
tion wavelength can have impact on the photonic band for
liquid-crystal-based superlattices.

Figure 7 depicts the band structures in accordance with
different refractive indices. For n1 = 0.5, qa is approaching
zero when T is around 102 K, 281 K, and 461 K [Fig. 7(a)]. For

Fig. 4. Temperature-adjustable density of states of lithium-niobate-based superlattices with different layer thicknesses: (a) a2 = 2.185 µm,
(b) a2 = 10 µm, (c) a2 = 50 µm.

Fig. 5. Temperature-adjustable band structure of lithium-niobate-based superlattices with various values of propagation wavelength:
(a) λ= 350 nm, (b) λ= 532 nm, (c) λ= 1064 nm.
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Fig. 6. Temperature-adjustable density of states of lithium-niobate-based supperlattices with various values of propagation wavelength: (a) λ=
350 nm, (b) λ= 532 nm, (b) λ= 1064 nm.

Fig. 7. Temperature-adjustable band structure of liquid-crystal-based superlattices with respect to a varied layer refractive index: (a) n1 = 0.5,
(b) n1 = 2.5, (c) n1 = 3.5.

Fig. 8. Temperature-adjustable density of states of liquid-crystal-based superlattices with respect to different layer refractive indices: (a) n1 = 0.5,
(b) n1 = 2.5, (c) n1 = 3.5.

n1 = 2.5 or n1 = 3.5, the left and right sets of the dispersion
curves are separated far from each other [Figs. 7(b) and 7(c)].

Figure 8(a) reveals the values of the DOS are around 0–0.04
for n1 = 0.5. The maximum value of the DOS is 0.04, which
appears at several temperature points of 34 K, 126 K, 214 K,
303 K, 395 K, 485 K, and 577 K [Fig. 8(a)]. Figure 8(b) shows
that the values of the DOS are around 0–0.18 for n1 = 2.5. The
peak value of the DOS is 0.18, which shows at the temperature
points of 54 K, 145 K, 233 K, 324 K, 413 K, 504 K, and 593 K
[Fig. 8(b)]. For n1 = 3.5, the values of the DOS are around 0–
0.19 [Fig. 8(c)]. The maximum value of the DOS is 0.19, which
presents at T = 56 K, 147 K, 237 K, 326 K, 416 K, 505 K, and
595 K [Fig. 8(c)].

These results imply that the higher photonic DOS is asso-
ciated with higher refractive index for the liquid-crystal-based
superlattices.

The changes introduced in the photonic band structure
and photon DOS, when different layer widths are used, are
illustrated in Figs. 9 and 10. Figure 9(a) illustrates that for
a2 = 10 nm, the values of qa become zero when T is 551 K.
Also, the values of the DOS present distinct peaks when
T is 100 K and 551 K [Fig. 10(a)]. Figure 9(b) reveals that
for a2 = 30 nm, the values of qa take zero when T is 253 K
and 553 K. Moreover, the values of DOS show four peaks
at T = 99 K, 250 K, 399 K, and 550 K [Fig. 10(b)]. It can
be seen from Fig. 9(c) that for a2 = 50 nm, the zeroth val-
ues of qa appear when T is 10 K, 192 K, 371 K, and 550 K.
Correspondingly, the peak values of DOS are presented at
T = 11 K, 101 K, 190 K, 280 K, 370 K, 459 K, and 550 K.

One clearly sees that, for narrower layers, the corresponding
dispersion curves become fewer and the photonic DOSs become
sparser.
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Fig. 9. Temperature-adjustable band structure of liquid-crystal-based supperlattices with respect to different layer thicknesses: (a) a2 = 10 nm,
(b) a2 = 30 nm, (b) a2 = 50 nm.

Fig. 10. Temperature-adjustable density of states of liquid-crystal-based supperlattices with respect to different layer thicknesses: (a) a2 = 10 nm,
(b) a2 = 30 nm, (c) a2 = 50 nm.

Fig. 11. Temperature-adjustable band structure of liquid-crystal-based superlattices corresponding to different propagation wavelengths:
(a) λ= 225 nm, (b) λ= 450 nm, (c) λ= 900 nm.

The impact introduced in the photonic band structure and
photon DOS, when different propagation wavelengths are used,
is illustrated in Figs. 11 and 12.

It can be found in Fig. 11(a) that whenλ is 225 nm, the zeroth
values of qa are presented at the temperature points of 10 K,
56 K, 101 K, 146 K, 192 K, 238 K, 281 K, 326 K, 371 K, 416 K,
462 K, 507 K, 551 K, and 595 K. Moreover, the values of the
DOS reveal peaks at 11 K, 55 K, 100 K,146 K, 190 K, 234 K,
280 K, 324 K, 371 K, 415 K, 459 K, 505 K, 549 K, and 595 K
[Fig. 12(a)].

Figure 11(b) reveals that when λ is 450 nm, the zeroth values
of qa appear when T is 10 K, 101 K, 191 K, 281 K, 370 K,
462 K, and 551 K. The values of the DOS show distinct peaks
at 11 K, 54 K, 99 K, 144 K, 190 K, 234 K, 281 K, 325 K, 370 K,
415 K, 459 K, 504 K, 550 K, and 596 K.

Figure 11(c) illustrates that when λ is 900 nm, the zeroth
values of qa appear when T is 11 K, 189 K, 371 K, and 551 K.
Accordingly, the peak values of the DOS appear at 11 K, 102 K,
190 K, 279 K, 369 K, 459 K, and 549 K [Fig. 12(c)]. It can be

noted that, for smaller wavelength, the corresponding disper-
sion curves become more intensive and the photonic DOSs
become sparser.

C. Temperature Values Corresponding to the
Zero-〈n〉 and Null Gap

The relationship between Tc 1 and Tc 2 and the refractive index
(n1) as well as the ratio of the layer width (a1/a2) is investigated.

Figure 13(a) illustrates the impact of a1/a2 on Tc 1 with
various values of n1. When n1 is 1, Tc 1 shows the trend of first
increasing and then decreasing with a1/a2 increasing, which
presents a transition at a1/a2 = 2.1. When n1 is 1.5, Tc 1 first
increases and then decreases, which reveals the transition at
a1/a2 = 1.4. When n1 is 2 or 3.5, Tc 1 is suppressed when a1/a2

increases.
Figure 13(b) shows the trend of n1 versus Tc 1 with different

values of a1/a2. When a1/a2 is 0.5, Tc 1 shows the trend of first
increasing and then decreasing with n1 increasing, which shows
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Fig. 12. Density of states of liquid-crystal-based superlattices with respect to different wavelengths: (a) λ= 225 nm, (b) λ= 450 nm,
(c) λ= 900 nm.

Fig. 13. Critical temperature point (Tc 1 and Tc 2) dependence on the layer width ratio, refractive index, and frequency. (a) Tc 1 versus a1/a2 with
various values of n1. (b) Tc 1 versus n1 with various values of a1/a2. (c) Tc 2 versus a1/a2 with various values of n1. (d) Tc 2 versus n1 with various a1/a2.

a transition at n1 = 4.2. When a1/a2 is 1, Tc 1 first increases
and then decreases, which reveals the transition at n1 = 2.1.
When a1/a2 is 1.5, Tc 1 first increases and then decreases, which
transitions at n1 = 1.4. When a1/a2 is 4, Tc 1 is suppressed when
a1/a2 is increasing.

Figures 13(c) and 13(d) reveal that Tc 1 drops with either
a1/a2 or n1 increasing. The dropping rate is dependent on n1 or
a1/a2.

Figures 14(a)–14(d) indicate that Tng 1 and Tng 2 are sup-
pressed when n1 or a1/a2 is enhanced. These indicate that the
temperature at which the zero-〈n〉 or null gap appears can be
related to the refractive index and the ratio of the layer width.
These parameters decide how high the temperature should
be operated in order to reach zero-〈n〉 or null gap. In practical
applications, an operational temperature lower than 600 K
can be easy to achieve through some commercial hot plates.
Temperatures higher than 600 K can be reached by using some
furnaces. Nevertheless, zero-〈n〉 or null gap can appear in the
lithium-niobate-based or liquid-crystal-based superlattices via
the modulation of the temperature.

Also, it should be noted that the concurrence of null gap
and zero-〈n〉 can be achieved at certain wavelength points,
which can be modulated by the temperature. As shown in
Fig. 15(a), the concurrence of null gap and zero-〈n〉 in the
lithium-niobate-based superlattices can be achieved at the
wavelength points of 450–664 nm when T is increasing from
68 K to 29,893 K, which falls in the range of visible light. For the
liquid-crystal-based superlattices, the wavelength correspond-
ing to the concurrence of the null gap and zero-〈n〉 decreases
from 2278 nm to 361 nm when T increases from 1 K to 1600 K
[see Fig. 15(b)].

They show the potential of using the temperature treat-
ment to accomplish the concurrence of zero-〈n〉 and null gap
in superlattices in the visible optical range. For the lithium-
niobate-based superlattices, the concurrence of zero-〈n〉
and null gap in the blue light range requires control of the
temperature around 376–1341 K [Fig. 15(a)]. For the liquid-
crystal-based superlattices, the concurrence of zero-〈n〉 and null
gap in the blue/green/red light range requires the control of the
temperature around 1340–1600 K [Fig. 15(b)].
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Fig. 14. Values of temperature corresponding to null gap (Tng 1 and Tng 2) dependence on the layer width ratio and refractive index. (a) Tng 1 versus
n1 with various a1/a2. (b) Tng 1 versus a1/a2 with various n1. (c) Tng 2 versus n1 with various a1/a2. (d) Tng 2 versus a1/a2 with various n1.

Fig. 15. Concurrence of null gap and zero-〈n〉 in the superlattices can be achieved at certain wavelength points, which can be modulated by the
temperature: (a) wavelength versus temperature for lithium-niobate-based superlattices; (b) wavelength versus temperature for liquid-crystal-based
superlattices.

A moment’s review of Eqs. (26), (30), (49), (58), (59),
(65), and (66) shows that the photonic band, DOS, null gap,
zero-〈n〉, and concurrence of the null gap and zero-〈n〉 are all
associated with the temperature. For instance, the tuning of the
band structure and DOS is done in the temperature range of
0–600 K. Also, it is able to achieve the null photonic gap at cer-
tain temperature points, which are decided by the ratio of layer
width and the refractive index. Furthermore, it is illustrated
that the spatial average of the wave vector 〈k〉 becomes null at
a specific temperature, depending on the layer thickness and
refractive index. The values of the temperature corresponding
to zero-〈n〉 are exhibited to be suppressed when the refractive
index or the ratio of the layer width is increased. It especially is
incredible to see how the null gap runs in parallel with zero-〈n〉
at specific optical wavelengths, which are temperature depen-
dent. It means that the physics of dispersion and the concept of
the effective refractive index are intimately related.

Since these optical properties are found to be partially
impacted by the thickness and refractive index of the materials,
it will suffice to consider the effective handling of these optical

properties with the design of device dimensions and the choice
of layer refractive index.

Since the beginning of metamaterial study, the physics of
zero-〈n〉 have attracted the attention of the scientific commu-
nity, including wavelength expansion, the geometry-invariant
wave phenomena, and wave tunneling through deformed
waveguides [26–32,35]. Traditional technologies for intro-
ducing zero-〈n〉 are built upon the collection of dispersive
permittivity of different materials, which can cross zero at a
specific wavelength. Our study brings new knowledge to this
field. In our findings, zero-〈n〉 is associated with the tempera-
ture in 1D superlattices made from lithium niobate or liquid
crystal. Furthermore, Eqs. (50)–(55) and the results presented
in Fig. 14 clearly indicate that the temperature corresponding to
the existance of zero-〈n〉 is in close relation with the values of n1

and a1/a2. These two parameters place some limitations on the
design of lithium niobate or liquid crystal based 1D superlattices
for introducing zero-〈n〉 through the tuning of the temperature.
Nevertheless, new devices may be fabricated to show a near-zero
effective refractive index with our methods. A number of exam-
ples of near-zero-〈n〉 technologies can be expected to be realized
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by exploiting the properties of these 1D supperlattices. One
example would be reconfigurable and smart surfaces, whose
near-zero-〈n〉 can be switched on or off by the rising or falling of
the temperature.

It is worth mentioning that Eq. (2), the Maxwell’s equation
derivative, has related the refractive index with the electrical
field or the layer thickness or the propagation wavelength. Given
that the refractive index is dependent on the temperature in
these two material systems we have proposed, there may be
values of the temperature that can make the corresponding band
structure and density of states resonant. At those values of the
layer thickness or the propagation wavelength or the refractive
index associated with the temperature, the coupling between
the optical field and band structure may be strong enough, and
the wave inside the waveguide could correspond to the coupled
modes occurring throughout the whole material systems. Such
a coupling may lead to the specific propagation of the optical
field in a fierce way. This gives rise to those effects as illustrated,
where the band structures and the density of states are shown to
be adjustable by the temperature along with various values of
the propagation wavelength, the refractive index, and the layer
width.

The modification of the band structure is an important
subject in this work, which proposes a temperature-adjusting
approach. It should be noted that other approaches turned out
to be beneficial, including the configuration of the defects [15],
the changing of the pattern of veins or the type of rods in the
photonic structure [18].

In many practical situations, the controlling of the optical
band, DOS, null gap, and zero-〈n〉 come together in a way
that can be accomplished through the engineering of the meta-
materials [26–32]. When it comes to the scope of the visible
light, this is generally not easy to achieve experimentally, which
may require the use of advanced optical lithography. It is useful
therefore to seek an alternative solution that is facile and cheap
to operate.

The understanding of these optical properties needs
development. Our method of using temperature-controllable-
refractive-index materials provides deep understanding of these
optical properties in terms of the temperature. Furthermore,
since the temperature is easy to manipulate in any modern lab,
our investigation gives a solution of controlling these optical
properties. Future developments may use the technique of
laser-micromachining to inscribe micro-channels in certain
substrates for filling the lithium niobate powders or liquid
crystal molecules to implement such 1D superlattices.

4. CONCLUSIONS

We have analytically studied the temperature-variable photonic
band structures and the DOSs of the superlattices consisting
of layers made from lithium niobate or liquid crystal, whose
refractive index is temperature sensitive. The band structures
and the DOSs are found to be controllable by the temperature
with various values of the propagation wavelength, the refrac-
tive index, and the layer width. The values of the temperature
where zero-〈n〉 is presented are found to be associated with the
propagation wavelength, refractive index, and layer width. It is
shown that a null photonic gap appears at certain temperature

points, which are decided by the ratio of the layer width and
the refractive index. The spatial average of the refractive index
〈n〉 vanishes at specific values of the temperature as functions
of the refractive index and the ratio of the layer width. The
null photonic gap and zero-〈n〉 can show up simultaneously at
certain wavelengths in the visible optical range. These values of
the wavelength are dependent on the temperature. This study
indicates that the introduction of lithium niobate or liquid
crystal in the design of 1D superlattices is meaningful. It pro-
vides the flexible construction of optical material systems whose
optical bands, null gap, and zero-〈n〉 can be adjustable via the
temperature.
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