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Multi-carbon (C2+) products derived from renewable 
electricity-powered CO2 electroreduction (CO2RR), such 
as with ethylene, ethanol and propanol, are of interest 

due to their high market value and the present-day energy density 
associated with their production1–11. Previous literature has focused 
therefore on the development of efficient catalysts and reactors for 
selective CO2 to C2+ (refs. 11–14). In these reactors, alkaline or neutral 
pH electrolytes are typically employed to suppress the competing 
hydrogen evolution reaction (HER) while promoting C–C coupling 
on the heterogeneous electrocatalyst15.

Reliance, in regard to CO2RR, on alkaline and neutral electro-
lytes leads to carbonate formation15–18. During both CO2RR and 
HER, the consumption of H+ creates a locally alkaline environment 
near the catalyst surface. One CO2 molecule then reacts with two 
OH− to produce one equivalent of CO3

2− for every two electrons 
transferred16,19. This militates against high CO2 utilization effi-
ciency—the percentage of CO2 converted per total CO2 input17. 
Furthermore, transport of carbonate to the anode and consequent 
evolution of CO2 mandates costly separation and recovery of CO2 
from the anode stream. This effect is even more pronounced for 
multi-electron transfer products16. When C2+ chemicals are pur-
sued, at least 75% of input CO2 is consumed to form carbonate 
rather than being reduced, representing a major obstacle on the 
path to cost-effective CO2 electrolysis16,19,20.

Liquid product crossover also requires addressing: formate, 
acetate and ethanol move through the anion exchange membrane 
(AEM) by migration, diffusion and electro-osmotic drag, leading to 
product loss21–24. This effect becomes more evident with increased 
operating current density—typically 30% of liquid products are lost 
at 200 mA cm−2 when employing known AEMs25.

The operation of CO2RR under acidic conditions addresses the 
challenges of previous neutral and alkaline electrolyte systems. A 
high proton concentration in the electrolyte and the use of Nafion 
membrane as the separator are expected to minimize carbonate for-
mation and liquid product crossover18,26,27. However, CO2RR does 
not normally proceed efficiently in acidic electrolyte, especially 
when multi-carbon products are intended, the result of kineti-
cally favoured HER under these conditions. H*, an intermediate  
for HER, competes with the adsorption of CO* over active sites  
during CO2RR28.

We reasoned that weakening the binding energy of H* while 
increasing CO* coverage could potentially suppress HER while 
enhancing C–C coupling for CO2 (refs. 28,29). Here we report cata-
lysts exhibiting increased efficiency under acidic CO2RR. We intro-
duce bimetallic X–Cu catalysts that modulate local CO* coverage 
and suppress H* adsorption through adsorbate–adsorbate interac-
tions28,29. Using density functional theory (DFT) calculations, we 
first screened different metals with a strong affinity towards CO* 
and found Pd–Cu to be the most promising candidate for CO2 to 
C2+ in acid, because it exhibits the lowest ΔGOCCOH* and, simulta-
neously, the lowest ∆GOCCOH*−∆GCHO* which, taken together, sug-
gest high activity and selectivity to C2+ products. Experimentally, 
we synthesized Pd–Cu bimetallic catalysts for implementation in 
an acidic CO2RR electrolyser employing an acidic bulk environ-
ment and operating under conditions that produce a mildly alka-
line local environment at the catalyst surface. This pH gradient 
ensures that carbonate locally generated is converted back to CO2 
to enhance carbon utilization and promote surface C–C coupling 
for C2+ production. We then demonstrate liquid product crossover 
<0.05% with a CO2-to-C2+ Faradaic efficiency (FE) of 89 ± 4%, and 
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single-pass carbon efficiency of 60 ± 2% to C2+ (total CO2 utilization 
of 68 ± 4% when considering the sum of C1 and C2+ products) at 
500 mA cm−2 in acidic media.

results
Local species concentration profile. To address kinetically 
favoured HER in acidic media, we first sought a suitable reaction 
environment for CO2RR by balancing bulk solution pH and carbon-
ate formation. The Bjerrum plot of the carbonate system shows that 
CO2 will be the dominant species at pH ≤4.0, suggesting a range 
of pH window options for acidic CO2RR30. We used finite-element 
simulations to model the local environment of CO2RR in an acidic 
electrolyser, adopting a previously reported one-dimensional (1D) 
domain diffusion-reaction model (Supplementary Note 1)13,31,32.

We first screened interfacial pH changes under varying solution 
pH at current density 500 mA cm−2 (ref. 32). No obvious pH change 
was observed from the electrode surface to the bulk solution at 
pH 0—the result of excess H+ (Fig. 1a). For solutions with pH >2.0, 
a pH gradient, resulting from limited mass transport of protons 
under high current density, was formed at the diffusion layer, in 
agreement with experimental observations27.

We also note the dependence of surface pH on applied current 
density at varying bulk pH (Fig. 1b and Supplementary Fig. 3).  
When we work with electrolytes at pH ≥2.0, depletion of H+ 
becomes more evident with increasing current density, the result 
of limited availability of local H+ to support the high reaction rate 
of the proton-coupled electron transfer reactions CO2RR and HER 
(Fig. 1b). For solution at pH 2.0 with current density >150 mA cm−2, 
surface pH increases to mildly alkaline (>9.5), leading to  
depletion of CO2,aq and the formation of carbonate (Fig. 1b,c). 

The concentration of carbonate rapidly decreases and carbonate 
is converted back to CO2 in the diffusion layer, the result of lower 
pH within the bulk electrolyte (Fig. 1a,d). The local CO2 fraction 
rises from 0.12 to 1.0, indicating no CO2 loss to carbonate forma-
tion during CO2RR for bulk pH 2.0 electrolyte. Under conditions 
of pH 3.0 and 4.0, it is noted that CO2 is depleted almost completely 
(Supplementary Fig. 4). We thus turned our focus to bulk pH 2.0 
solutions to balance available local CO2 with bulk acidity for current 
densities >150 mA cm−2.

Design of catalysts for acidic CO2RR. Previous work indicated that 
metals with a strong binding affinity towards CO* show a weaken-
ing of H* binding affinity, the result of adsorbate–adsorbate inter-
actions28,29. We screened different bimetallic X–Cu (X = Cr, Mo, W, 
Mn, Re, Fe, Ru, Co, Rh, Ir, Ni, Pt and Pd), with X having a strong 
affinity towards CO* (refs. 28,29). We considered CH4 and C2H4 as 
representative examples for C1 and C2+ products, respectively. For 
C1 products, the CHO pathway is selected since proton–electron 
transfer to CO* via the CHO pathway is lower than that of the COH 
pathway33, and further protonation can take place via CH2O* and 
OCH3* to CH4 (Supplementary Figs. 10 and 11). For C2+ production 
we chose the OCCOH pathway—CO* dimerization to OCCO* and 
subsequent protonation to OCCOH*—followed by the formation of 
CCO*, CHCO* and C2H4 (ref. 34) (Supplementary Figs. 10 and 11).  
With DFT, we first calculated Gibbs free energies for the formation 
of CHO* (∆GCHO*) and OCCOH* (∆GOCCOH*) on the (111) surface 
of bimetallic X–Cu. We chose ∆GOCCOH* as an indicator of the pro-
pensity of C2+ product generation, and ∆GOCCOH* − ∆GCHO* for the 
selectivity of CO2RR to C2+ versus C1 products. We observed a scal-
ing relation between ∆GOCCOH* and ∆GOCCOH* − ∆GCHO* (Fig. 2a): 
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of dissolved CO2.
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Pd–Cu was found to be the most promising candidate for active and 
selective C2+ production, with the lowest values of ∆GOCCOH* and 
∆GOCCOH* − ∆GCHO* (Methods).

We carried out further DFT studies on Cu and Pd–Cu to inves-
tigate the reaction pathway of CO2RR to C1 and C2+ products. As 
shown in Fig. 2b,c, an increase in CO* coverage on Pd–Cu facilitated 
CO2RR due to stronger adsorption of CO2—that is, 0.68 eV on Cu 
versus 0.34 eV on Pd–Cu. This also led to less efficient CO* desorp-
tion and a greater likelihood of CO* protonation, or of coupling to 
further-reduced products on Pd–Cu, since CO* is a key reaction 
intermediate in CO2RR in branching to C1 versus C2+ products. On 
both Cu and Pd–Cu (Fig. 2b), the potential-determining step for C1 
production is the protonation of CO* to CHO* while the generation 
of C2+ products is limited by CO* dimerization. Compared with Cu, 
enhanced C2+ versus C1 activity/selectivity is observed on Pd–Cu 
due to reduced ∆GOCCOH* and ∆GOCCOH* − ∆GCHO*.

The selectivity of CO2RR toward C2+ products can be improved 
further via HER suppression28,35: Pd–Cu strongly adsorbs CO2RR 
reaction intermediates, covers the catalyst surface and decreases the 
availability of vacant active sites for HER. The adsorption energy of 
H* is 0.2 eV weaker on Pd–Cu compared to that on Cu, suggesting 
suppressed HER. We also note that future, in-depth studies of kinet-
ics involving water and charge transfer will contribute to revealing 
the origins of selectivity for CO2R versus HER in aqueous solution, 
enabling further advances in catalyst design36,37.

Electrochemical CO2RR in acidic solution. In light of 1D trans-
port simulations and DFT calculations, we sought to prepare  
Pd–Cu catalysts and evaluate their CO2RR activity in the electrolyte 
at pH ~2.0. Pd was introduced onto a Cu/polytetrafluoroethylene 
(PTFE) catalyst through a galvanic exchange reaction enabled by 
the difference in potential of these two metals38,39. First we prepared, 
via sputter deposition, a 400-nm-thick layer of Cu catalysts on the 
surface of PTFE nanofibres. We then immersed the Cu/PTFE in a 

N2-saturated PdCl2 aqueous solution to prepare the Pd–Cu cata-
lysts on PTFE (Fig. 3a,b and Supplementary Fig. 13) using galvanic 
replacement between Cu and PdCl2, an approach that allows tuning 
of the ratio of Pd to Cu. Cu and Pd are uniformly distributed on 
the PTFE nanofibres in bright-field scanning transmission electron 
microscopy and energy-dispersive X-ray (EDX) elemental map-
ping (Fig. 3c). Pd 3d3/2 and Pd 3d5/2 with binding energy at 340.8 
and 335.4 eV, respectively, were observed on X-ray photoelectron 
spectroscopy (XPS), showing the introduction of Pd (Fig. 3d)40. 
We prepared a series of Pd–Cu catalysts on PTFE with different Pd 
ratios (denoted by X% Pd–Cu, X = 4.6, 5.5, 6.2, 6.7, 7.2) for CO2RR 
measurements (Fig. 3d,e).

CO2RR performance was evaluated in a flow-cell reactor 
employing a three-electrode configuration and using 0.5 M K2SO4 
(pH adjusted to 2.0 with sulfuric acid) aqueous solution as electro-
lyte. Figure 4a shows the FE of C2+ and H2 with different levels of Pd 
at a current density of 250 mA cm−2. We observed volcano behav-
iour correlating the selectivity of C2+ products to Pd concentration 
and an inverse trend for H2 and C1 FE values, with optimal results 
found at Pd 6.2%. A peak C2+ FE of 80% was observed for 6.2% Pd, 
while 68% was measured for bare Cu. When we further increased 
Pd concentration to >6.2%, FE for CO2RR decreased with increased 
HER. The electrochemical capacitance measured on 6.2% Pd–Cu 
was 14% lower than on Cu/PTFE, while 6.2% Pd–Cu showed a 20% 
increase in partial current density to C2+, notably higher than the 
relative difference in electrochemical surface area (Supplementary 
Figs. 16 and 17 and Supplementary Table 4).

We then carried out in situ Raman spectroscopy to investigate 
interactions between CO* and the catalytic surface to gain mecha-
nistic insight into C–C coupling during CO2RR on Pd–Cu and Cu 
(Supplementary Fig. 18). We observed a band associated with the 
atop-bound CO (>2,000 cm−1) associated with C–C coupling3,41, 
and observed it to be more pronounced for Pd–Cu compared  
with Cu. Compared with Cu, the blueshift of the Cu-CO stretch 
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band—in the range 375–425 cm−1—was evident on Pd–Cu,  
suggesting a stronger Cu-CO bond on Pd–Cu, also beneficial to 
C–C coupling8.

The product distribution of CO2RR on 6.2% Pd–Cu in the cur-
rent density range (100–750 mA cm−2) is shown in Fig. 4b. HER 
selectivity was as high as 16% at 100 mA cm−2, consistent with 
finite-element modelling that showed a higher local proton concen-
tration. When we increased current density a mildly locally alkaline 
environment emerged, as suggested in Fig. 1a,b, since local protons 
are consumed rapidly. Beginning at 200 mA cm−2 and above, experi-
mental FEH2 and FEC1 begin to decrease and total FEC2+ increased. 
At 500 mA cm−2 we achieved the highest FE for C2+ products of 87%, 
with a partial current density to C2+ equal to 440 mA cm−2 (Fig. 4b,c).  
We compared this selectivity of CO2 to C2+ in acidic solution with 
previous reports (Fig. 4g and Supplementary Table 5)18,24,42–44. The 
devices maintained stable operation for 4.5 h at 500 mA cm−2, with 
FEC2+ >70% (Fig. 4d). The slight decline in current density may have 
arisen from wetting of the gas-diffusion layer45–50. No appreciable 
structure changes were observed on Pd–Cu/PTFE electrodes after 
the reaction (Supplementary Figs. 19–21).

Acidic media minimize carbonate formation, and thus should 
contribute to overcoming carbon utilization limits witnessed in neu-
tral and alkaline solutions. By progressively reducing the flow rate of 
CO2 from 50 to 2 standard cc min–1 (sccm), we achieved single-pass 
carbon efficiency (SPCE) of 68% for the totality of CO2RR products: 
60% of CO2 introduced at the inlet was converted to C2+ at the outlet 
(at 2 sccm and 500 mA cm−2; Fig. 4e). We compare this SPCE with 
previous CO2-to-C2+ reports in Fig. 4f and Supplementary Table 6.

We further examined liquid product crossover in the pres-
ent system with that seen in an AEM electrolyser. As shown in 
Fig. 4g, crossover of liquid products was observed within 0.5 h in 
an AEM electrolyser—5.4, 39 and 1.0% for formate, acetate and 

ethanol, respectively, while in a Nafion-based CO2 electrolyser we 
were unable to detect liquid products in the anolyte with no evi-
dence of ethanol, acetate or formate in the anolyte following 4.5 h 
of electrolysis.

Conclusions
We report herein crossover-free, high-single-pass carbon-utilization 
CO2-to-C2+ electrosynthesis. Finite-element studies show that 
pH 2.0 was the most suitable reaction condition for acidic CO2RR, 
a judicious balance between bulk pH and carbonate formation. 
DFT results show that the introduction of Pd to Cu enhanced local 
CO* coverage to promote C–C coupling. The high affinity for CO* 
competes with the active site of H* to weaken H-binding energy, 
suppressing the HER and thus enabling high selectivity to C2+ on 
Pd–Cu. Experimentally we synthesized a series of Pd–Cu catalysts 
for CO2RR under acidic conditions and report a single-pass carbon 
efficiency for CO2 to C2+ of 60% at 500 mA cm−2. These findings 
suggest future directions toward further progress in overcoming 
CO2 loss in CO2 electrolysers.

Methods
Profile modelling of local species. Concentration profiles of local species 
(CO2, HCO3

−, CO3
2−, OH−, H+) were simulated as a reaction-diffusion model 

by COMSOL (COMSOL Multiphysics v.5.6), a model based on previous 
reports14,30,31. The geometry was defined in 1D based on an experimental set-up 
(Supplementary Fig. 1), including a 400-nm-thick cathode catalyst layer and 
an electrolyte domain located adjacent to the cathode (0–100 µm) to represent 
the diffusion layer51. The model included acid–base carbonate equilibria, CO2 
reduction reaction and dilute species transport physics in liquid phase.  
A time-dependent study was adapted to simulate species evolution toward  
steady state (Supplementary Note 1).

DFT calculations. Electronic structure calculations were carried out with 
the Perdew–Burke–Ernzerhof exchange-correlation52 functional in a plane 
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wave pseudo-potential implementation using the Vienna ab initio simulation 
package53,54. Plane-wave cut-off energy of 450 eV and 3 × 3 × 1 Γ-centred 
k-point sampling, generated by the Monkhorst–Pack scheme, were used for all 
calculations55. A hexagonal charged water overlayer—that is, five water molecules 
and one hydronium (H3O+)—was included to take into consideration of both field 
and solvation effects56. The zero-damping DFT-D3 method of Grimme et al. was 
also considered for a better description of long-range van der Waals interactions57. 
All atoms in the two bottom-most layers were fixed during structural 
optimization while other atoms, together with the adsorbates, were allowed 
to relax. Geometries were optimized by considering different adsorption sites 
on the surfaces with respect to the charged water overlayer, and those with the 
lowest energy from DFT calculations are reported. Ab initio molecular dynamics 
(AIMD) simulations were conducted in a constant-volume, constant-temperature 
ensemble and performed for 10 ps with the time step set to 0.5 fs, to optimize the 
structure of the charged water overlayer. The Nosé–Hoover thermostat method 
was used to maintain the temperature at 300 K. Reaction intermediates in CO2R 
and HER were included in the optimized geometry from AIMD simulations, and 
again to perform DFT calculations.

Calculations were performed on the (111) surface of face-centred cubic Cu 
using a 3 × 3 × 4 periodic cell with a vacuum layer of thickness 12 Å, since the 
(111) surface is generally found to have minimum surface energy. Bimetallic X–Cu 
(X = Cr, Mo, W, Mn, Re, Fe, Ru, Co, Rh, Ir, Ni and Pd) was constructed when one 
of the Cu atoms on the surface was substituted by an X atom. We found that X1Cu2 
hollow sites preferentially favoured CO adsorption and increased CO* surface 
coverage, which led to further 2CO* adsorption besides the active sites compared 
with Cu. This structure was determined by assuming that C1 and C2+ products were 
produced only on Cu sites, with the adsorbed 2CO* around the X atom near these 
active sites not participating in those reactions generating C1 and C2+ products.

Contributions to Gibbs free energies for each non-adsorbed species and 
adsorbates are summarized in Supplementary Table 9. Zero-point energies, 
entropies and heat capacities were calculated from harmonic oscillator 
approximation, and used to convert electronic energies directly determined 
from DFT calculations into Gibbs free energies at 298.15 K when applying the 
computational hydrogen electrode model58. We note that the Gibbs free energies 
determined from our calculations for different bimetallic X–Cu systems provide 
a reasonable prediction of semiquantitative thermodynamic trends under 
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formate) and H2 on a series of Pd–Cu catalysts on PTFE with increasing atomic percentage of Pd. b,c, FE values of all products (b) and C2+ partial current 
density (c) on 6.2% Pd–Cu catalysts under different applied current densities. Flow rate of the CO2 inlet was 50 sccm. d, CO2RR stability measurement of 
C2+ products during 4.5 h of electrolysis with an applied current density of 500 mA cm−2. e, FE values and SPCEC2+ of CO2 to C2+ on 6.2% Pd–Cu at different 
CO2 flow rates (applied current density, 500 mA cm−2). f, Comparison of CO2RR partial current density, C2+ product FE, liquid product crossover fraction, 
pH of bulk electrolyte and SPCE of 6.2% Pd–Cu with state-of-art CO2RR catalysts. Comparison limited to reports with pH ≤4.0 or with total current density 
>10 mA cm−2. g, Product crossover for Pd–Cu catalyst in an AEM CO2 electrolyser after 0.5 h of operation, and in a Nafion CO2 electrolyser after 4.5 h. 
Values are means; a,b,e, error bars indicate s.d. (n = 3 replicates).
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electrochemical conditions, since we ignore the presence of transition states and 
charged intermediates on surfaces59. It is more appropriate for electrochemistry if 
grand canonical DFT calculations are performed as implemented in the software 
programme JDFTx60,61, where all intermediates are treated at the same potential.

Electrode preparation. All chemicals were used without further purification. The 
Cu/PTFE electrode was prepared using a magnetron sputtering system (Denton 
Explorer 14 Sputtering System). Cu catalysts (Cu target, 99.99%, Kurt J. Lesker Co.) 
with a thickness of 400 nm were sputtered on PTFE membranes (pore size 450 nm, 
Beijing Zhongxingweiye Instrument Co.) at a sputtering rate of 0.778 Å s–1. Using 
galvanic replacement, we introduced Pd to the Cu/PTFE substrate. The Cu/PTFE 
electrodes were immersed in an aqueous solution of PdCl2 (99.999% metal basis, 
Aladdin) at a concentration of 5 mmol l−1 at room temperature. Catalysts with 
different Pd/Cu ratios were synthesized by controlling reaction time. An Ag/AgCl 
electrode (saturated with KCl, IDA) and Pt mesh (30 × 15 mm2, 99.99%, Gaoss 
Union) were used as reference and counter electrode, respectively.

Characterization. To characterize catalyst morphology, scanning electron 
microscopy (SEM) images were collected using TESCAN MAIA3. Transmission 
electron microscopy (TEM) and corresponding EDX elemental mapping were 
collected using Tecnai F20 microscope. X-ray diffraction patterns were recorded 
on Rigaku SmartLab with Mo radiation. The surface composition of electrodes was 
characterized using a Nexsa XPS system using a 12 kV aluminium source.

Electrochemical measurements. Electrochemical measurements were  
conducted in flow-cell set-up with three chambers (Supplementary Fig. 8).  
A PTFE-based gas-diffusion electrode was fixed between the gas and catholyte 
chambers. A proton exchange membrane (Nafion 117, Fuel Cell Store) was 
used to separate the anode and cathode chambers; 40 ml of CO2-saturated 
0.5 M K2SO4 aqueous solution was used as electrolyte, circulated through the 
cathode and anode chambers at a rate of 6 ml min−1 by two peristaltic pumps. 
Pure CO2 gas (99.99%, Air Products) was continuously supplied to the gas 
chamber at a flow rate of 50 ml min−1. CO2RR performance was tested using 
the chronopotentiometric method, with power supplied by an electrochemical 
workstation (ZAHNER ZENNIUM pro). Potentials versus the Ag/AgCl reference 
electrode were converted to the RHE reference scale using the following equation: 
ERHE=EAg/AgCl + 0.197V + 0.0591 × pH. Cell resistance was evaluated by 
performing electrochemical impedance spectroscopy measurement  
(CH Instruments, 660E).

Gaseous products were analysed using a gas chromatograph (Ramiin, GC 2060) 
equipped with flame ionization and thermal conductivity detectors. The calibration 
curves for CO, CH4, C2H4 and H2 were obtained using certified standard gas 
samples obtained from Scientific Gas Engineering Co. Liquid products were 
quantified using a nuclear magnetic resonance spectrometer (Bruker AVANCE III 
HD 500), with dimethyl sulfoxide as an internal standard.

FE for each product was calculated based on the following equation:

FEi =
zi×xi×F

Q × 100 (1)

where zi is the number of electrons transferred for product, xi is the number of 
moles of the product, F is Faraday’s constant and Q is the total charge passed  
during electrolysis.

SPCE for C2+ products was calculated based on the following equation:

SPCE =
60 s×

∑
(I×xi×FEi÷(Ni×F))

flow rate(l/min)×1 min÷24.5(l/mol) (2)

where I is the applied current, FEi is the FE of a specific group of products from 
CO2 reduction, xi is mole ratio of CO2 to a specific product (for example, xi = 1 for 
C1 products while xi = 2 for C2 products) and Ni is the number of electron transfers 
for every specific product molecule.

Data availability
All data are available from the authors upon reasonable request.
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