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ABSTRACT: With the electrochemical carbon dioxide reduction
reaction (CO2RR) being a promising method to reduce
atmospheric carbon dioxide (CO2), transition metal dichalcoge-
nides (TMDCs), such as molybdenum disulfide (MoS2), have
recently risen as potential catalysts for CO2RR. However, pristine
TMDCs are bottlenecked by the insufficiency of active sites in the
basal plane. In this study, focusing on polycrystalline MoS2, we
perform systematic density functional theory calculations to
investigate the role of grain boundaries (GBs) on the catalytic
performance of MoS2 for CO2RR. Our results show that most GBs
contribute to lowering the reaction energy of the potential-limiting
step in CO2RR. This effect can be further amplified with the
introduction of S vacancies. In addition, the introduction of GBs with vacancies is shown to act as an effective method to break the
scaling relations between reaction intermediates, which is crucial in improving catalytic efficiencies. Our findings demonstrate that
defect engineering holds great potential to activate the basal plane of TMDCs for CO2RR, providing valuable insights into
engineering TMDCs for high-performing CO2RR electrocatalysts.
KEYWORDS: electrocatalysis, carbon dioxide reduction reaction, transition-metal dichalcogenides, grain boundaries, defect engineering,
density functional theory

1. INTRODUCTION
Carbon dioxide (CO2) is the primary greenhouse gas emitted
into the atmosphere through human activities. Its increasing
atmospheric concentration over the years has been regarded as
one dominant factor causing global climate change and thus a
significant concern worldwide.1,2 To mitigate the adverse
effects of CO2 emissions, there have been notable efforts in
recent years on CO2 reduction.3−6 Among those efforts, the
electrochemical CO2 reduction reaction (CO2RR) has been
perceived as an appealing route since it can produce easily
tunable products under ambient conditions.6−11

The efficiency of electrochemical CO2RR critically depends
on catalyzing the electrochemical conversion of CO2 to the
desired fuels and chemicals. Currently, the electrocatalysts for
CO2RR processes are predominantly metals, particularly noble
metals such as gold (Au),12−14 copper (Cu),15−18 silver
(Ag),19,20 and palladium (Pd)21−23 due to their high
conductivities, which facilitate charge transfer and high
selectivity toward desired products, and therefore are regarded
as better electrocatalysts for CO2RR.

24,25 However, these
materials suffer from high costs and low accessibility, thus,
impeding their large-scale applications. Consequently, re-
searchers are motivated to search for alternative catalytic
materials. In this search, two-dimensional (2D) materials, such
as graphene, transition-metal dichalcogenides (TMDCs), and

black phosphorus, have attracted enormous interest due to
their unique electrical and physical properties.11 Among the
2D material group, TMDCs emerge with great potential thanks
to their low-cost,26,27 mechanical flexibility,28 relatively high
carrier mobility,29,30 and tunable electronic structures,31−34

factors leading to favorable catalytic performance, while
without suffering shortcomings, e.g., low stiffness,35 low
conductivity,36,37 and low degrees of freedom for structural
transformation38 in other popular 2D materials. As such,
numerous studies have been conducted to investigate 2D
TMDCs as potential catalysts for a wide range of chemical
reactions involving CO2RR.

39−43 For instance, Asadi et al.
reported that nanoflake tungsten diselenide (WSe2) edges and
layer-stacked molybdenum disulfide (MoS2) with Mo-termi-
nated edges could offer higher current densities and lower
overpotentials to outperform common metal catalysts in
CO2RR.

44,45 Abbasi et al. discovered that the required
overpotential for CO2RR at the edges of MoS2 could be
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further lowered by doping.46 Li et al. found that the edge-
exposed 2H MoS2 hybridized with N-doped carbon could
enrich active sites and reduce the energy required for the
potential-limiting step for CO2RR.

47 In contrast to the ability
of TMDC edges to catalyze CO2RR, the basal plane of a
TMDC is generally catalytically inert.48−50 With the edge sites
constituting only a small fraction of the available sites, this
becomes a critical bottleneck to the practical application of 2D
TMDCs as CO2RR electrocatalysts and necessarily calls for
means to activate the TMDC basal plane.
Despite the perceived basal inertness of TMDCs in the

CO2RR, one aspect that remains elusive is the role of lattice
defects in affecting the catalytic properties of TMDCs. Lattice
defects are unavoidably introduced during conventional
fabrication of TMDCs.51,52 In various other material systems
(e.g., Cu and Au), it has been shown that the catalytic activities
of materials may be enhanced by introducing and/or
manipulating the lattice defects, namely defect engineering.53

The effectiveness of defect engineering in other material
systems has motivated many studies of lattice defects in
TMDCs, both experimentally54−57 and theoretically.54,58,59

Among the various lattice defects, grain boundaries (GBs) are
one category that is prevailing, particularly in large-scale
fabrications of TMDCs. For instance, chemical vapor
deposition (CVD) of TMDCs results in domains of different
crystalline orientations and thus abundant GBs.60 It has been
demonstrated that sites at GBs tend to be more active and can
facilitate catalytic reactions, such as the hydrogen evolution
reaction (HER),61−65 CO2RR,

66−68 oxygen reduction and
evolution reaction (ORR and OER),69−73 and nitrogen
reduction reaction (NRR)74,75 in various material systems.
Meanwhile, GBs also serve as locations for segregation of other
defects, such as vacancies, self-interstitials, and antisite
defects.76−79 However, despite the potential of GBs in
facilitating various catalytic reactions, the effects of GBs and
their interplay with other defects on the CO2RR catalytic
activity of TMDCs remain elusive.
In the present study, we investigated the possibility of

utilizing GBs toward basal plane activation of TMDCs for
CO2RR, employing systematic first-principles density func-

tional theory (DFT) calculations. MoS2 was selected as the
representative TMDC system due to its earth abundancy
nature, which enables its large-scale production,80−82 and its
2H phase was assumed due to its thermodynamical stability
compared to other phases.83 Different GBs in MoS2 were
constructed with their formation energies examined, followed
by the energy profiles of the CO2RR at these GBs being
calculated. Then, the interplay between vacancies and GBs was
considered, and its effect on the CO2RR at GBs was studied. In
the end, by evaluating scaling relations between reaction
intermediates and structural and electronic properties of
different systems, we proposed ways to potentially activate
the inert basal plane of TMDCs, which shed light on GB
engineering toward CO2RR.

2. COMPUTATIONAL METHODS
2.1. Structures and Formation Energies of GBs.

Starting with the periodic unit cell of 2H MoS2, we first
optimized the geometries to obtain the equilibrium lattice
parameters. As indicated in Figure 1a, the lattice constant (a),
the Mo−S bond length (dMo−S), the distance between the
upper and lower sulfur atoms (dS−S), and the S−Mo−S bond
angle (θ) of pristine 2H MoS2 were determined to be 3.19 Å,
2.41 Å, 3.12 Å, and 80.54°, respectively, all in good agreement
with previous studies.84,85

We then constructed and optimized a series of GBs of
different tilt angles (i.e., ranging from 21.8° to 60°), with their
atomic configurations illustrated in Figure 1b−h. The GBs
were constructed using nanoribbon (NR) models with chiral
edges containing zigzag (ZZ) and/or armchair (AC) structures
(see Figure 1a). NR widths greater than 35 Å were ensured to
avoid GB-edge interactions. We note that the NR model was
also used for pristine MoS2 for consistency in the energy
calculations.
Depending on the tilt angle, the NR structures show

different geometrical characteristics at the GBs and edges. For
instance, for the 60°-tilt GBs, the NRs obtained may consist of
ZZ-α, ZZ-β, or AC edges, depending on the type of GBs, as
shown in Figure 1d−h. On the other end, for the 21.8°-tilt

Figure 1. (a) Top and side views of pristine 2H MoS2with AC and ZZ edges, where a, dMo−S, dS−S, and θ denote the lattice constant, the Mo−S
bond length, the distance between the upper and lower sulfur atoms, and the S−Mo−S bond angle, respectively. Top views of (b) 5|7a, (c) 5|7b,
(d) 4|8a, (e) 4|8b, (f) 8|8a, (g) 8|8b, and (h) 4|4 GBs. In these figures, Mo and S atoms are shown as purple and yellow spheres, respectively.
Possible S vacancy sites are marked by ‘X’. Tilting angles, ring compositions, and edge types are labeled from left to right on top of each GB
structure.
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GBs, the edges are arbitrary combinations of ZZ and AC sites,
as shown in Figure 1b,c. The ring units constituting the GB
vary greatly for different GBs, and below we describe GBs in
terms of their ring compositions. For example, the 21.8°-tilt
GBs are composed of pentagon-heptagon pairs periodically
separated by one hexagonal ring (5|7a and 5|7b) (cf., Figure
1b,c), and the 60°-tilt GBs contain repeated (1) quadrangle−
octagon pairs (4|8a and 4|8b), (2) octagon rings (8|8a and 8|
8b), and (3) quadrangle rings (4|4) constituting the entire GB
(c.f. Figure 1d−h). These GBs were constructed following the
method described by Ouyang et al.,65 and more details are
provided in Figure 1.
Since GBs, edges, and chemical potential of Mo and S all

contribute to the total energy of the MoS2 NR model, the
formation energy of a GB (or the GB energy) in MoS2,
denoted as EGB

MoS2, is calculated by

E
E N N

L
E

E

GB
MoS tot S S Mo Mo

Edge,1

Edge,2

2 =
× ×

(1)

where Etot is the energy of the entire NR structure with GB;
EEdge,1 and EEdge,2 are the energy of each edge per unit length; L
is the length of the NR; μS and μMo are the chemical potentials
of S and Mo, respectively; NS and NMo are the numbers of S
and Mo atoms in the GB structure, respectively. More details
on EGB

MoS2 calculations are provided in Section I of the
Supporting Information.

2.2. Vacancy Defects and Vacancy Formation En-
ergies on MoS2 GBs. Since S single vacancies (SVs) tend to
form more easily on MoS2 GBs under both Mo-rich and S-rich
conditions compared to other defects such as Mo SVs,86 here
we introduced S SVs at different MoS2 GBs. In addition, by
introducing S SVs, the Mo atoms can potentially be exposed to
and form direct bonds with the adsorbates, which has proven
to be an effective method to increase the surface catalytic
activities.87,88 Possible S vacancy sites are marked in Figure 1.
The formation energy of an SV of substance i, Evi , is calculated
by

E E Ei
iv v= + (2)

where E and Ev are the energies of pristine and defective GB
systems, respectively, and μi is the chemical potential of
elemental S, taking the chemical potentials of 1/8 S8 as a
reference. The results are provided in Section II of the
Supporting Information.

2.3. Gibbs Free Energy of the CO2RR Process. The
overall CO2RR process proceeds at the electrode surface, in
contact with the electrolyte.89 Since carbon monoxide (CO)
has a wide range of industrial applications,90 and it can be
produced into different organic chemical products,91 our study
targets the CO2 to CO conversion. As suggested by previous
studies,90,92,93 a three-step reaction mechanism via a two-
electron pathway is considered. During the first step (eq 3), a
concerted proton−electron transfer occurs, which forms
COOH adsorbed on the catalyst surface sites. The COOH is
then reduced to adsorbed CO by accepting one proton−
electron pair (eq 4). The adsorbed CO can be easily desorbed
if the binding is weak enough (eq 5).

Step1: CO H (aq) e COOH2 + + ++ (3)

Step2: COOH H (aq) e CO H O2+ + ++ (4)

Step3: CO CO + (5)

where the asterisk (*) indicates the surface adsorption site and
* followed by a molecule denotes an adsorbed species. More
information on adsorption sites is provided in Section IV of the
Supporting Information. The first two steps are potential-
dependent, while the last step is a desorption process that
proceeds without proton/electron transfer.
The Gibbs free energy changes, ΔG of each reaction step

(eqs 3−5) are calculated using the computational hydrogen
electrode (CHE) model,94 which can effectively model
electrochemistry using data from first-principle calculations.
The ΔG is calculated by subtracting the sum of Gibbs free
energies, G, of the individual reactants from the products. For
example, for step 1 (eq 3), ΔG = G*COOH − (G1/2H2 + GCO2 +
G*), where the subscripts denote the species types. G is
calculated by

G E Ecorr= + (6)

where E is the electronic energy of individual components and
Ecorr is the correction energy composed of zero-point energy
(ZPE), entropy (S), and heat capacity (Cp), expressed by

E C T TSZPE dcorr p= + (7)

where T is the temperature taken as the room temperature
(298.15 K). For more details, see Section V of the Supporting
Information. With ΔG known, the theoretical limiting
potential (UL), under the applied potential of 0.0 V, can be
obtained as

U G e/L = (8)

where e is the charge on an electron.
2.4. Computational Details. All calculations were

performed by employing spin-polarized DFT within a
generalized gradient approximation parametrized by Perdew,
Burke, and Ernzerhof (GGA-PBE), as implemented in the
Vienna ab initio simulation package (VASP).95−99 The
electron−ion potential was described by the projected-
augmented wave (PAW) method,98,100 and a kinetic energy
cutoff of 520 eV was used for the plane wave expansion. The
Brillion zone was sampled using a 1 × 4 × 1 gamma-centered
grid of k-points. All structures were relaxed until the atomic
forces were less than 0.01 eV/Å and the total energies
converged to 10−5 eV. The in-plane separation between the
NR edges across periodic boundaries is set to be greater than
20 Å to avoid any artificial effect arising from edge−edge
interactions. The vacuum spaces in all supercells were >15 Å
above the MoS2 plane to avoid any artificial interactions. The
DFT-D2 method of Grimme was used to address any van der
Waals (vdW) interactions resulting from dynamical correla-
tions between fluctuating polarizations of molecules.101

3. RESULTS AND DISCUSSION
3.1. Formation Energies of MoS2 Grain Boundaries.

The formation energies for different MoS2 GBs as functions of
μS are presented in Figure 2. Generally, the formation energy
lies between −0.75 and 2.17 eV/Å. We observe that under an
S-rich environment, 8|8a, 5|7b, 5|7a, and 4|8a GBs are more
likely to form, as indicated by their relatively low formation
energies. Notably, 8|8a and 5|7b GBs exhibit negative EGB

MoS2

under S excess conditions, implying the possibility of their
spontaneous formation under S-rich conditions. In contrast,
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the preferences in GB types are more ambiguous under the
Mo-rich condition as EGB

MoS2 values show a limited difference.
For instance, the difference among all EGB

MoS2 values is less than
0.53 eV/Å at the Mo extremum.

3.2. Reaction Coordinates and Energetics of CO2RR at
GBs. The free energy pathways of reduction of CO2 to CO on
MoS2 GBs are presented in Figure 3a, with numeric details
summarized in Section V of the Supporting Information.
Among all elementary reaction steps, the activation of CO2
triggering *COOH formation (i.e., reaction step 1) is the most
endergonic step. The weak interaction between *CO and
substrates (i.e., CO physisorption) results in the downward

behavior observed in the *CO desorption step (i.e., reaction
step 3). The limiting potentials of all GB systems, except for 4|
4 (2.28 eV), are lower than those of the pristine basal plane
(2.20 eV). This lower potential indicates that grain boundaries
can indeed break the inertia of the basal plane and enhance the
interaction between *COOH and the adsorption site. This also
seems to be a generic feature for many other TMDCs from our
preliminary analysis (e.g., see preliminary results in Section III
of the Supporting Information on the energetics of 2H WSe2
GBs, where a similar trend was observed).
Although GBs show potential in enhancing catalytic CO2RR

performance by lowering the reaction energy of MoS2 basal
plane, the energies at the potential-limiting step are still high
(>1.00 eV, except for 8|8a which shows 0.65 eV), which may
hinder reactions according to the Sabatier principle.102 This
can lead to a preference for competing reactions, such as HER,
which is unavoidable under aqueous conditions. More on HER
and CO2RR competitions will be discussed in the Section 3.3.
Besides the GB itself, its role as a sink for point defects like S

SVs (confirmed by the low formation energies of S SVs at GBs,
see Section II of the Supporting Information) also comes into
play in affecting the CO2RR. Thus, the CO2RR at S SVs
decorated GBs were investigated, with the reaction energies
presented in Figure 3b. All GBs, except for the case of 8|8a,
show lower reaction energies for the potential-limiting step in
the presence of the S SV. The *COOH formation step is
observed to be the potential-limiting step for all cases except
for the case of 4|4 SV GB, where *CO desorption dominates
the reaction. These overall better catalytic activities in SV-
decorated GBs can be rationalized by the change of binding
sites after the addition of SVs (i.e., the 3p S bonding has
changed to 4d Mo bonding). Figure 3 shows how the
intermediate adsorbed atoms bond differently on 4|4 GB with
and without SV. Notably, the reaction on 4|4 SV GB obtains
the lowest reaction energy (0.31 eV), while it is thermody-

Figure 2. Formation energies (EGB
MoS2) of MoS2GBs as functions of

chemical potential of elemental S (μS). Dash-dotted lines indicate a
preferential formation under Mo-rich conditions, while dashed lines
represent a favorable formation under S-rich conditions. The dotted
line (4|8a GB) shows no preference of the chemical environment.

Figure 3. Energetics of the CO2RR process on MoS2GBs (a) without and (b) with the presence of S SVs. Top and side views of *COOH (c and e)
and *CO (d and f) adsorptions on the MoS2 4|4 GB as a representative, without (c and d) and with (e and f) the presence of S vacancies.
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namically least favorable on the GB without adding an SV.
Adsorption configurations for SV GB structures other than 4|4
are provided in Figure S4 of the Supporting Information.
It is also worth noting that the energies required for CO2RR

potential-limiting step on 8|8a GB, and 5|7b, 8|8b, 4|8b, 4|8a,
and 4|4 SV GBs are lower than those on MoS2 edges (around
0.9 eV according to Xie et al.103), indicating a higher likelihood
of the reaction occurring on the aforementioned GBs rather
than the edges.

3.3. HER vs CO2RR Selectivity. As shown above, the
reaction energies of the CO2RR can be reduced by GBs, and
furthermore, more significantly decreased in the presence of S
SVs at GBs. However, besides the reaction energy, another
important aspect necessitating consideration in assessing the
CO2RR performance is the suppression of the competing
HER, an aspect essential to ensure high CO selectivity.
Therefore, we calculated the reaction energies associated with
H2 evolutions on the SV-decorated GB structures. The HER
energetics on pristine GBs are provided in the work published
by Ouyang et al.65 Since the difference between the
thermodynamic limiting potentials for CO2RR and HER

(UL(CO2RR) − UL(HER)) is a good indicator of CO2RR
selectivity,104−106 we plot out the UL(CO2RR) − UL(HER) in
Figure4. As seen from Figure 4a, when there is no SV added to
the GBs, all GBs show more negative values compared with the
pristine basal plane, indicating that all GB systems are prone to
HER competition. On the other hand, for MoS2 GBs
decorated with SVs (Figure 4b), more positive values are
observed for all GB systems compared to SV MoS2, which
indicates that all SV GBs obtained higher selectivity for CO2
reduction to CO compared with SV incorporated basal plane.
Notably, 4|4, 4|8b, 4|8a, and 8|8b SV GBs show better
selectivity compared to the pristine basal plane (red dotted line
in Figure 4b), indicative of their potential to selectively activate
the inert MoS2 basal plane for the CO2RR. Note that 8|8a SV
GB is excluded from this discussion due to its high energy at
the potential-limiting step.

3.4. Break the Scaling Relation. Numerous efforts have
been made to break the scaling relation between the
intermediates in CO2RR since the scaling relation prevents
the adsorption energy of intermediates from being tuned
independently and limits the catalytic efficiency of transition-

Figure 4. Difference between the CO2RR and HER thermodynamic limiting potentials (UL(CO2RR) − UL(HER)) on different (a) pristine and
(b) SV-decorated MoS2 GBs, respectively. The red dotted line indicates the value for a pristine basal plane.

Figure 5. (a) Calculated binding energy between *COOH and *CO for the studied GB systems. The scaling relation among 4|4, 4|8a, and 5|7a SV
GBs, as well as SV MoS2 is shown using the red line. The half-shaded red dots represent SV GBs that do not obey the linear scaling. The vertical
dotted line is the CO adsorption threshold. When Eb,CO is greater than the threshold, CO gas is more likely to form, while when the binding energy
is smaller than the threshold, CO is more likely to be further protonated into other products such as CH4 (see Section VIII of the Supporting
Information for details). Note that these CO binding energies include a 0.51 eV correction to account for the PBE error. (b, d) Adsorption
isosurfaces of *COOH and *CO on 4|8a SV GBs, respectively, and (c, e) adsorption isosurfaces of *COOH and *CO on 4|8b SV GBs,
respectively. The green and blue regions represent the charge density difference of +0.005 and −0.005 e Bohr−1, respectively.
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metal catalysts.107 Reducing coordination numbers,108,109

doping p-elements,110 introducing oxophilic adsorption
sites,111 separating intermediates on different active
sites,67,112 tethering active ligands,113 and strain engineering114

are all possible methods to break such scaling relations.115

The scaling relation for the binding energies between
*COOH and *CO on MoS2 GB and SV GBs is shown in
Figure 5a. Since *CO is physisorbed to the pristine GBs except
for 5|7b, no apparent scaling relation is observed. For specific
chemisorbed species, a linear scaling relation becomes evident,
notably within the 4|4, 4|8a, and 5|7a SV GBs, along with the
pristine basal plane with SV, as indicated by the red line in
Figure 5a. More detail on the linear scaling relation is provided
in Section IX of the Supporting Information. However, other
chemisorbed species, namely 8|8b, 5|7b, and 4|8b SV GBs,
show deviations from the linear relation. For structures
conforming to the linear line, we observed that the
intermediate species, namely *COOH and *CO, attained the
same bonding coordination as well as consistent adsorption
sites. This stands in clear contrast to structures that deviate
from the linear line, where dissimilar adsorption configurations
are observed for the intermediate species. For example, on 4|8b
SV GB, COOH bonds with three Mo atoms while CO bonds
with one, which decouples the binding energies, while on 4|8a
SV GB, both *COOH and *CO bond with 3 Mo on the same
site (Figure 5b−e). Moreover, when introducing SVs on
pristine GBs, we can effectively reduce the coordination
numbers of GB sites and introduce sites that can additionally
bond with O in the adsorbates, which explains why the binding
energies of intermediates on pristine 5|7b GB depart from the
scaling relation.

3.5. Substrate Deformations. During the adsorption
step, we observed some reconstruction in the substrate,
indicative of deformation induced by the adsorption. Such
deformation may have a profound impact on site selectivity

and catalytic activity.116,117 Specifically, adsorption can induce
deformation strains on the host surface, resulting in the
generation of surface stress and a subsequent decrease in
surface energy. This reduction in surface energy can be
advantageous by minimizing the overall energy of the
adsorbate-modified system. Conversely, the migration of
atoms may lead to blockage of the adsorption site and,
consequently, deactivate the site. Therefore, it is important to
quantify the degree of deformation, for which we calculated the
substrate deformation energy (Edef) to estimate the degree of
substrate deformation caused by the adsorption of a reaction
intermediate:

E
E E

Adef
sub,f sub,i=

(9)

where Esub,i and Esub,f are the energies of the substrate before
and after adsorptions, respectively, and A is the area of the
substrate. Note that although the deformation at GBs can be
rather localized, the range of such localization varies from GB
to GB (e.g., Figure 6c,d) and is hard to define. Consequently,
we use Edef, global deformation energy of the entire substrate
structure (per unit area), instead. Despite Edef not capturing
the deformation localization, it provides a rough measure of
the overall degree of deformation.
Figure 6a, b provide the substrate deformation energies for

different studied systems after *CO and *COOH adsorptions.
On the one hand, structural deformation can mitigate the effect
of bonding. For example, strong bonding is observed between
C and Mo for CO adsorption at the MoS2 5|7b GB, indicating
endothermic *CO desorption. However, due to the large
deformation of such a GB (Figure 6a), the effect of bonding is
mitigated, resulting in a negative slope during *CO desorption
(i.e., exothermic). On the other hand, the deformation-induced
reconstruction may lead to a less desirable structure for
adsorption. For example, the deformation rendered 8|8a SV

Figure 6. Substrate deformation energies for different (a) GBs and (b) SV GBs after *CO and *COOH adsorptions. Configurations of *CO
adsorption on 5|7b GB and *COOH adsorption on 8|8a SV GB are displayed in parts (a) and (b), respectively. (c) and (d) show the local
deformation of the 5|7b GB before and after CO adsorptions, respectively.
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GB to reconstruct into a more stable configuration without
active Mo exposure after *COOH formation (Figure 6b),
which substantially suppressed the catalytic activity. It is,
however, important to note that structural characteristics are
not the sole factors affecting catalytic activities. There are other
factors, in particular the electronic properties, which play a
critical role and will be discussed in the following section.

3.6. Electronic Properties. As many studies have
demonstrated a strong link between catalytic activities and
electronic properties,70,118,119 we further investigated the
electronic properties to understand the rationale for the
changes in adsorption behaviors. Energy analysis by Huang et
al. revealed that the closer an electronic state is to the Fermi
energy, EF, the greater its contribution to bonding.120

Therefore, density of states (DOS) calculations were
performed for various cases. Figure S5a and b provide the
DOS plots for adsorptions on MoS2 pristine basal plane and 5|
7b GB, respectively. *COOH adsorption on pristine MoS2
surface shows sulfur 3p bonding state hybrid with carbon 2p
state at around −11.0 eV. In comparison, the hybridization on
5|7b GB occurs at about −8.0 eV, which is closer to EF,
indicating stronger bonding at 5|7b GB. The DOS of *CO
adsorption on 5|7b GB shows CO bonding with the Mo 4d
state, whereas no bonding is observed for that on the pristine
basal plane. It is notable that we also noticed conductivity
changes with the introduction of defects. For example, with the
introduction of 4|8b GB on MoS2, EF becomes filled with
energy states, indicating its conductive behavior, which can
potentially enhance the carrier mobility of pristine MoS2 that is
inherently a semiconductor, as shown in Figure S5c.
Charge transfer, another descriptor for CO2RR,

121 has been
obtained using the Bader charge analysis.122 Figure 7 provides
the number of charges transferred from the substrates to the
adsorbates corresponding to adsorption energies. Most data
points for CO physisorption are excluded in the figure due to
the minuscule number of electrons transferred (i.e., weak vdW
forces dominant). The numeric details are provided in Table
S8 in the Supporting Information. Generally, lower adsorption
energies are observed when more charges are transferred from
the catalyst to the adsorbates. By creating SVs on GBs, we
efficiently increase the charge transferred from the substrates to
the adsorbates and therefore enhance the catalytic activity.

However, though a clear correlation between the adsorption
energy and charge transfer can be observed (c.f. Figure 7), the
relationship is not well-defined, as indicated by the deviation of
data points from the linear fitting. This is possibly due to
different degrees of lattice deformation during the reactions for
different systems. In addition, ligancy, or coordination
numbers, which describes the number of nearest neighbors
that a surface site bonds to,123 is another descriptor for CO2RR
that strongly correlates with charge transfers.124 A higher
coordination number corresponds to stronger bonding and
more charge transferred. As shown in Table S9 in the
Supporting Information, the binding energy decreases with an
increasing coordination number of C, except for 8|8b,
obtaining low ligancy but strong binding. This 8|8b peculiarity
is probably due to the substantial structural deformation
experienced by GB structure induced by the *CO adsorption.

4. CONCLUSIONS
In summary, the present study systematically examined GBs as
a potential means to activate the basal plane of MoS2 for
enhanced CO2RR performance by employing first-principles
calculations. GBs can enhance the catalytic performance of
MoS2 by decreasing the energy required by the potential-
limiting step. The interactions between *CO and the GBs are
relatively weak, facilitating the desorption of *CO as gaseous
CO. Introducing S vacancies to GBs serves to further reduce
the limiting potential, owing to strong bonds formed between
adsorbates and undercoordinated vacancy sites. The steady
*CO adsorption is a critical precursor for subsequent
reduction to various other hydrocarbon products. Our
electronic analysis showed that augmented binding strength
between substrate and adsorbate arises from escalated charge
transfer, attainable through the exposure of undercoordinated
substrate sites. Substrate deformation is another factor that
strongly impacts the binding behavior. We also discovered that,
by changing the binding sites of intermediates and reducing
the coordination numbers at the adsorption sites, GBs make it
possible to disrupt the conventional scaling relation. In terms
of selectivity, 4|4, 4|8b, 4|8a, and 8|8b SV GBs show better
performance toward CO2RR over the competing HER
compared to the pristine basal plane.

Figure 7. Number of excess charges on (a) COOH and (b) CO for the studied systems, with respect to adsorption energies, with their correlations
marked by the straight lines. Fully shaded and half-shaded symbols are used for adsorbates bonded to Mo and S, respectively, and hollow symbols
represent physisorbed species. Note that only one physisorbed *CO was chosen for plain and SV GBs, whose Eads,CO is the closest to average
physisorbed *CO Eads,CO, for a better demonstration.
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Our findings show that GBs and S vacancies synergistically
offer a viable defect engineering route to activate the inert
MoS2 basal plane toward CO2RR, providing valuable insights
toward designing a new class of high-performance CO2RR
electrocatalysts.
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