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Conversion of CO2 to multicarbon products 
in strong acid by controlling the catalyst 
microenvironment

Yong Zhao    1,2,5, Long Hao    3,5, Adnan Ozden1,5, Shijie Liu1,5, Rui Kai Miao    1, 
Pengfei Ou    4, Tartela Alkayyali    1, Shuzhen Zhang2, Jing Ning3, 
Yongxiang Liang4, Yi Xu    1, Mengyang Fan1, Yuanjun Chen    4, 
Jianan Erick Huang4, Ke Xie4, Jinqiang Zhang    1,4, Colin P. O’Brien    1, 
Fengwang Li    2 , Edward H. Sargent4 & David Sinton    1 

Electrosynthesis of multicarbon products from the reduction of CO2 in 
acidic electrolytes is a promising approach to overcoming CO2 reactant loss 
in alkaline and neutral electrolytes; however, the proton-rich environment 
near the catalyst surface favours the hydrogen evolution reaction, leading 
to low energy efficiency for multicarbon products. Here we report a 
heterogeneous catalyst adlayer—composed of covalent organic framework 
nanoparticles and cation-exchange ionomers—that suppresses hydrogen 
evolution and promotes CO2-to-multicarbon conversion in strong acid. 
The imine and carbonyl-functionalized covalent organic framework 
regulates the ionomer structure, creating evenly distributed cation-carrying 
and hydrophilic–hydrophobic nanochannels that control the catalyst 
microenvironment. The resulting high local alkalinity and cation-enriched 
environment enables C–C coupling between 100 and 400 mA cm−2.  
A multicarbon Faradaic efficiency of 75% is achieved at 200 mA cm−2.  
The system demonstrates a full-cell multicarbon energy efficiency of  
25%, which is a twofold improvement over the literature benchmark acidic 
system for the reduction of CO2.

Electrocatalytic conversion of CO2 provides a route to produce  
renewable, carbon-based chemical feedstocks and close anthropo-
genic carbon cycles1,2. Multicarbon (C ≥ 2) products such as ethylene 
(C2H4) and ethanol (C2H5OH) are of particular interest due to their high  
market values and demand3. Despite recent advances in electro-
synthesis of C2 products4–16, most systems rely on alkaline or  
neutral electrolytes to promote C–C coupling and suppress the 
competing hydrogen evolution reaction (HER)17. The local alkaline  

environment at the cathode–electrolyte interface induces carbonate 
formation, which leads to a low single pass CO2 conversion efficiency 
(SPCE < 25% for C2 products)18. Regenerating the lost CO2 results in 
a substantial energy penalty that necessitates an additional 50%  
energy input to the alkaline CO2 reduction (CO2R) electrolysers19–21. 
In neutral electrolysers, carbonate crosses over to the anode, 
releasing CO2, and the separation of CO2 from the anodic O2 stream  
incurs additional costs22,23.
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catalyst surface reached a neutral pH (~7.6) at these conditions (Fig. 1b).  
When proton-insulating nanoparticles (500 nm in diameter) were 
embedded into the ionomer layer, proton transport was constrained 
further to the particle-interspaced ionomer nanochannels. The catalyst 
surface reached an alkalinity of pH ≈ 12.5 (Fig. 1c). Increasing the particle  
size or the layer thickness had little influence on the local alkalinity 
(Supplementary Fig. 1). Replacing the PFSA ionomer with water resulted 
in a substantial decrease of local alkalinity to pH ≈ 7.4 (Supplementary 
Fig. 1), demonstrating the efficacy of PFSA in limiting proton influx 
and outward hydroxide migration. The uniform distribution of PFSA 
ionomers in the adlayer is necessary to prevent acid penetration and 
realize high local alkalinity at the catalyst.

Seeking experimental evidence for the proton-flux-constraining 
design, we prepared a well-dispersed mixture of commercial poly styrene 
nanospheres (PS, 450 nm in diameter) and PFSA ionomers, and spray-
coated the dispersion onto a 200 nm copper layer on a porous polytetra-
fluoroethylene (PTFE) substrate (Supplementary Figs. 2 and 3). A tightly 
packed adlayer (~5 µm thick) with PS:PFSA heterojunctions was formed 
with some isolated ionomer aggregates (Fig. 1d and Supplementary Fig. 4).  
An electrode with a full PFSA layer (~6 µm thick) was employed as the 
control (Supplementary Fig. 5). We investigated their apparent proton 
fluxes under various cathodic current densities using a permeation flow-
cell (Fig. 1e). The OH− produced from water dissociation was removed 
by the circulating water in the permeate chamber or was neutralized by 
the protons passed through the adlayer. The proton-flux-constraining 
effect was quantified by the change in pH of the permeate (Fig. 1f). The 
PS:PFSA adlayer efficiently limited proton flux towards the permeate, 
as evidenced by a high pH of >12 achieved after 6 min of electrolysis. By 
contrast, the PFSA-only layer realized only neutral conditions (pH ≈ 7). 
These observations are consistent with our modelling results. The appar-
ent flux of protons through the PS:PSFA adlayer decreased by ~20% 
compared with the case with only a PSFA layer (Supplementary Fig. 6).

We then evaluated the CO2R performance of the adlayer-modified 
PTFE–Cu electrodes in phosphoric acid solution (pH ≈ 1.0). Potassium 
ions (3 M) were added to the catholyte to facilitate multicarbon 
formation19,33,34. In the current density regime of 100–400 mA cm−2, no 
CO2R product was detected on the PFSA-modified electrode. Increasing 
the thickness of the PFSA adlayer to 11 µm enabled C2H4 production 
(FEC2H4 < 10%) but H2 evolution remained dominant (FEH2 > 60%)  
(Supplementary Figs. 5 and 7). By contrast, the PS:PFSA-modified 
electrode suppressed the competing HER (FEH2 ≈ 40%) and achieved 
productive CO2-to-C2 conversion (Fig. 1g). Increasing the adlayer thick-
ness impaired C2 formation (Supplementary Fig. 8). The peak FEC2H4 
and FEC2 values at 250 mA cm−2 are 23% and 43%, respectively, which 
are comparable with the best results (28% and 48%) previously achieved 
at a similar electrolyte pH and much high current densities 
(~1,200 mA cm−2)19. The deposition of copper nanoparticles on  
the previously reported19 electrically conductive adlayer during  
CO2R facilitates the HER (Supplementary Fig. 9), confirming the need 
for insulating material within the adlayer.

Although the PS:PFSA adlayer structure shows promise for C2 
electrosynthesis at moderate current densities, the prevailing HER 
(FEH2 ≈ 40%) precludes energy-efficient CO2-to-C2 conversion in strong 
acid. When PFSA—an ionomer with a hydrophobic fluorocarbon (−CF2−) 
backbone and hydrophilic sulfonic-acid group (−SO3H)-terminated 
side chains—is mixed with hydrophobic polystyrene, it is unevenly 
distributed among polystyrene nanospheres due to their weak 
interactions36,37. With an uneven distribution of cation-carrying nano-
channels (Supplementary Figs. 4 and 10), regions of high local acid 
penetration allowed the HER to dominate the overall reaction. The 
disordered PFSA configuration also blocked the diffusion of locally 
produced anions (HCO3

− or CO3
2−) and gases (CO2R products or regener-

ated CO2), resulting in carbonate deposition and ionomer aggregation/
migration in the adlayer (Supplementary Fig. 11), and a short lifetime 
(Supplementary Fig. 12). Similar effects on local ion or gas transport 

Operating CO2R in strongly acidic media (pH < 1) is one solution 
to address the CO2 loss issue24–28. The locally alkaline environment 
required for multicarbon synthesis can be created by applying very 
high current densities (>1 A cm−2)19. The protons in the bulk acidic 
electrolyte convert locally formed carbonate back to CO2 within the 
diffusion layer, preventing CO2 cross-over to the anode; however, the 
high voltage (~4.2 V) required to drive such high current densities and 
the limited C2 Faradaic efficiency (FEC2, ~48%) together result in a low 
energy efficiency (~12%)19.

To improve energy efficiency, high C2 selectivity at lower currents 
should be pursued, which would reduce Ohmic losses and the full 
cell voltage while maintaining sufficient reaction rates for industrial 
application (>100 mA cm−2)29–32; however, at moderate current densi-
ties (for example, 100–400 mA cm−2), the influx of protons from the 
acidic surroundings (pH < 1) is greater than the local consumption of 
protons24. The resulting local environment (pH < 8) favours the HER and 
suppresses the formation of C2 products19. Lowering the acidity of the 
bulk electrolyte (for example, to pH > 3) would improve local alkalinity 
yet comes at the cost of increased solution resistance (Supplementary 
Table 1) and a higher cell voltage.

We reasoned that a catalyst adlayer—to restrict proton influx at 
the catalyst–electrolyte interface—could improve the local alkalinity 
to a level that favours C2 electrosynthesis (pH > 11) without sacrificing 
ion conductivity. The adlayer would need to selectively block pro-
ton transport from the diffusion layer (tens of micrometres thick) 
while increasing the concentration of metal ions (for example, K+, Na+, 
Cs+) needed to promote the CO2R (refs. 19,33,34). Commercial cation-
exchange thin films are adlayer candidates; however, the abundant 
cation-conducting hydrophilic domains in these films facilitate pro-
ton transport35,36. Incorporating organic nanofillers into the cation-
exchange polymer matrix could potentially overcome this problem 
by breaking the proton-conducting networks while maintaining  
the accessibility of cations to the catalyst surface. As-formed hetero-
geneous thin layers could thereby exert independent control over both 
the local pH and the cation environment.

Here we report a heterogeneous cation-carrying, proton-blocking 
adlayer to enable efficient electrosynthesis of C2 products on copper 
over a current density range of 100–400 mA cm−2 in acidic media 
(pH ≈ 1.0). We constructed the adlayer using insulating polymer  
nanoparticles (IPN) and a perfluorinated sulfonic-acid (PFSA) ionomer 
(Fig. 1a). We found that amphoteric covalent organic frameworks 
(COFs) with imine and carbonyl groups induced a uniform distribution 
of an oriented PFSA ionomer coating via electrostatic interactions. 
This composite structure confines proton transport to the hydrophilic 
nanochannels and enriches potassium ions near the catalyst surface. 
The regulated proton flux and cation distribution afforded the copper 
catalyst a kinetically favourable local environment for CO2 activation 
(FECO2R > 85%) and HER suppression (FEH2 < 15%). This strategy enabled 
a C2 Faradaic efficiency (FE) of 75% at 200 mA cm−2. We demonstrated 
a system with a full-cell voltage of 3.5 V and an energy efficiency of 25% 
for acidic CO2-to-C2 conversion—double that of the literature 
benchmark19.

Results and discussion
Modelling and experimental validation using the PS:PFSA 
adlayer
We began by modelling the proton-flux-constraining capability of a 
PFSA ionomer adlayer (5 µm thick) using a simplified three-dimen-
sional ion transport model (simulating conditions at 200 mA cm−2 
with an acidic boundary of 0.1 M protons; see Methods for details). In 
response to concentration gradients and electric fields, the protons 
(H+) migrated to the catalyst surface and the produced hydroxide ions 
(OH−) migrated to the bulk solution. The local pH was determined by 
the steady-state equilibrium between H+, OH– and H2O according to 
the water-dissociation equilibrium. With the full ionomer layer, the 
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due to uneven ionomer distribution are well established in the field of 
proton exchange membrane fuel cells38–40.

COF:PFSA adlayer for efficient C2 electrosynthesis
We sought to design an ordered adlayer to suppress the HER and steer C2 
electrosynthesis (Fig. 2). We expected that a more uniform distribution 
of strongly bound ionomers would be formed on positively charged 
hydrophilic nanoparticles with a highly uniform surface chemistry. A 
locally ordered PFSA configuration with alternating layers of −SO3H-
rich and −CF2-rich domains could be formed at the heterojunction 

(Fig. 2a)36,37. In this scenario, cation (hydrated H+ and K+) transport 
is confined to the hydrophilic laminar nanochannels, whereas the 
locally produced gases can diffuse out via the oriented hydrophobic  
channels—preventing blistering of the adlayer that would allow acid 
penetration. Potassium ions have a higher affinity for the sulfonate 
groups (−SO3

−) than H+ (ref. 36), and thus they can be trapped and  
stabilized in the hydrophilic nanochannels to reduce cation transport. 
Such an adlayer would enable regulation of the proton flux over all 
catalytic sites, with ionomer-stabilized K+ ions near the catalyst surface 
for CO2 activation and reduction.
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Fig. 1 | Catalyst microenvironment control in acidic media via proton-flux-
constraining ionomer adlayer design. a, Schematics of interfacial reactions 
and proton transport near catalyst surface. b,c Modelled pH profiles for the 5 µm 
PFSA layer (b) and 5 µm IPN:PFSA adlayer (c) over a 200-nm-thick catalyst. The 
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surface to eliminate charging and outline the ionomer structure. e, Schematic 
illustration of the experimental set-up for ion flux measurements. WE, working 
electrode; CE, counter electrode; RE, reference electrode. f, The pH change of 
permeate during 15 min of electrolysis at cathodic current densities of 
100–250 mA cm−2 for PS:PFSA- and PFSA-modified electrodes. g, CO2R product 
distribution of PS:PFSA-modified PTFE–Cu electrodes. Values are means and 
error bars indicate s.d. (n = 3 replicates). The hollow squares indicate FEC2.
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Noting that nitrogen sites could introduce positive surface charges 
and improve the ionomer distribution on the substrate38,40, we substi-
tuted the bare polystyrene with nitrogen-containing polystyrene nano-
spheres that were positively charged in acidic conditions 
(Supplementary Fig. 13). The formed adlayer exhibited greater HER 
suppression (FEH2 ≈ 20–30%) than the bare polystyrene counterpart 
(FEH2 ≈ 40%) (Supplementary Fig. 14); however, the C2 selectivity 
achieved in this configuration was low (<48%), as was the stability 
(<1 h)—an outcome we attribute to unevenly distributed nitrogen sites 
and a disordered PFSA ionomer adlayer (Supplementary Fig. 15).

To overcome this problem, we turned our attention to COFs, a class 
of crystalline porous polymers which combines hydrophilicity, uni-
formity and precisely tunable surface function41–43. We reasoned that 
the COF nanoparticles with a reticular imine group distribution would 
simultaneously regulate the dispersity and molecular configuration of 

PFSA ionomers, forming an efficient proton-flux-constraining adlayer. 
Noting the critical role of cations (for example, K+, Na+, Cs+) in enabling 
CO2R in acidic conditions19,33,34, we sought additional cation-adsorption 
sites on the COF to promote the cation enrichment approximate to the 
catalyst surface.

To implement this strategy experimentally, we synthesized an 
acid-resistant triformylphloroglucinol and benzidine-derived ampho-
teric COF (Tp-COF, where Tp is 1,3,5-triformylphloroglucinol) rich 
in imine and carbonyl groups (Fig. 2b and Supplementary Fig. 16). 
The imine groups are protonated to form positively charged sites in 
acidic solution (pH < 6) (Fig. 2b,c), which can interact with the −SO3

− 
groups of PFSA to increase its adhesion to the COF and regulate its 
microstructure. The electron-rich carbonyl groups create a negatively 
charged COF surface under neutral and alkaline conditions (pH > 6) 
via tautomerism and deprotonation (Fig. 2b,c and Supplementary 
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Fig. 17), which could facilitate K+ stabilization near catalyst and CO2R 
kinetics44,45. Scanning electron microscopy (SEM) images revealed 
a homogeneous porous nanoparticle-assembled COF:PFSA adlayer 
(~10 µm thick) over the PTFE-supported copper catalyst layer  
(Fig. 2d). Transmission electron microscopy (TEM) energy-dispersive 
X-ray spectroscopy (EDS) mapping revealed an even ionomer distribu-
tion on the COF particles (Fig. 2e). The ionomer thickness was esti-
mated to be around 10 nm (Supplementary Fig. 18), which is equivalent 
to ~20 layers of ordered PFSA molecules (side chain length ≈ 0.5 nm) in 
which −SO3

− groups tend to face the COF surface10,46,47. The COF:PFSA 
adlayer exhibited excellent proton-flux-constraining capability at each 
applied current density (Fig. 2f).

We examined the CO2R performance of the COF:PFSA-adlayer-
modified copper electrodes in the same acidic conditions as employed 
in the PS:PFSA case. Over the full current density range  
(100–400 mA cm−2), the COF:PFSA adlayer greatly suppressed the 
competing HER (<15%) and improved CO2R selectivity (FE > 85%)  
(Fig. 3a). The FEC2 values showed a volcano trend with a peak of 78% at 
250 mA cm−2. At 200 mA cm−2, FEH2 was suppressed to 9% and FEC2 
reached 75% (42% towards C2H4, 26% towards C2H5OH and 7% towards 
CH3COOH) with a C2 partial current density of 150 mA cm−2 (Supple-
mentary Fig. 19). The value of FEC2 remained nearly constant as  
the electrolyte acidity was reduced from pH 0.7 to 1.9 (Supplementary 
Fig. 20), whereas FE decreased with decreasing K+ concentration from 
3 M to 0.5 M (Supplementary Fig. 21). A sufficient concentration of K+ 

ions (at least 2 M) is essential for efficient C2 production. Increasing 
the COF:PFSA-adlayer thickness from 10 µm to 19 µm caused the HER 
to increase from 9% to 17% and FEC2 to decrease from 75% to 69% (Sup-
plementary Fig. 22). The increased COF layer thickness creates a more 
effective proton transport barrier but simultaneously prevents K+ 
access. The lack or absence of K+ near the catalyst intensifies H2 produc-
tion and suppresses CO2R (Supplementary Fig. 21). No obvious interac-
tion between the nitrogen-rich COF and copper surface was detected 
to contribute to C2 formation (Supplementary Fig. 23). The crystallinity 
and specific surface area of COF nanoparticles did not impact the cata-
lytic performance (Supplementary Fig. 24). In an extended electrolysis 
at 200 mA cm−2, the reaction maintained an FEC2 of 75% for 20 h, and 
was still at >70% after 30 h of electrolysis (Fig. 3b). Scanning electron 
microscopy and TEM-EDS analyses revealed a well-maintained adlayer 
macrostructure and COF:PFSA heterogeneous microstructure after 
the extended electrolysis (Supplementary Figs. 25 and 26). We attribute 
the performance degradation after 20 h to the gradual flooding of 
hydrophobic domains by the liquid CO2R products (for example, 
C2H5OH), allowing increased proton flux (Supplementary Fig. 27).

Decoupling the impacts of COF:PFSA adlayer on C2 production
The FEC2 and stability surpass the best results obtained in previous 
acidic systems19, and are comparable with those of alkaline and neutral 
systems using state-of-the-art catalysts6,7,12,16,48,49. This suggests that 
the COF:PFSA is able to create a robust, favourable alkaline and 
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K+-enriched microenvironment near the catalyst for stable CO2-to-C2 
conversion. Specifically, the COF-enabled uniform ionomer distribu-
tion and ordered hydrophilic nanochannels regulate the proton flux 
and improve the local pH over all catalytic sites, whereas the ionomer-
stabilized K+ ions proximate to these active sites promote the kinetics 
of CO2R under proton-depleted local conditions. The ordered hydro-
phobic domains facilitate the diffusion of locally produced gas and 
prevent the accumulated microbubbles from breaking the adlayer, 
thereby offering a mechanically stable environment for ion transport 
and interfacial reactions.

However, constraining the proton flux to improve local pH also 
blocks K+ ions due to their shared cationic identities and transport 
pathways. We posited that a microenvironment that is both alkaline 
and K+-rich is achieved by tuning the cation-flux-constraining capability 
of the COF:PFSA adlayer.

To test this hypothesis, we varied the density of cation-carrying 
nanochannels by tuning the ionomer content in the COF:PFSA adlayer 
(Fig. 3c and Supplementary Fig. 28). Decreasing the PFSA content from 
20 wt% to 10 wt% experimentally did not affect the hydrophobicity of 
the adlayer (contact angle ≈ 131°) but led to a gradual increase in FEH2 
from 9% to 36%, accompanied by a reduced FEC2 from 75% to 49% at 
200 mA cm−2. Ion permeation measurements confirmed that the lower 
ionomer content adlayer permitted a higher proton flux (Fig. 3d). The 
high sensitivity of CO2R to the local proton concentration was further 
verified by reducing the density of −SO3H groups in the adlayer (20 wt% 
case). Replacing the used ionomer (equivalent weight (EW) = 790 g mol−1 
SO3H) with a higher-EW ionomer (1,100 g mol−1 SO3H) caused a sub-
stantial increase in FEH2 at various current densities (Supplementary 
Fig. 29)—a trend nearly identical to the 10 wt% and 13 wt% cases  
(Supplementary Fig. 28).

Increasing the ionomer content from 20 wt% to 35 wt% slightly 
improved the proton-flux-constraining capability compared with the 
20 wt% case; however, FEH2 also increased from 9% to 14% and FEC2H4 
decreased from 42% to 35% (Fig. 3c). Ion permeation measurements 
revealed that K+ transport was more affected than H+ transport by the 
ionomer content, especially at higher ionomer loadings, as reflected 
by the increased H+/K+ flux ratio from 2.4 (10 wt%) to 3.1 (20 wt%) and 
further to 5.1 (35 wt%) (Fig. 3d). The difference is attributed to the larger 
ionic size of K+ and its higher affinity to –SO3

−. The K+ transport flux 
measured in the permeation cell demonstrated the cation-enrichment 
effect achieved in the adlayer: 35 wt% case < 20 wt% case.

The COF surface may also contribute to K+ enrichment via its 
nucleophilic carbonyl groups. To assess the impact of the carbonyl 
groups, we employed a solely imine-containing Tf-COF (where Tf is 
1,3,5-triformylbenzene) as the control (Supplementary Fig. 30). The 
synthesized Tf-COF resembles Tp-COF in microstructure and enables 
the formation of uniform heterojunctions (Supplementary Fig. 31). 
The formed adlayer exhibited nearly identical proton-flux-constraining 
behaviours to the Tp-COF adlayer (Supplementary Fig. 32), suggesting 
that they possess a similar capacity to create a locally alkaline environ-
ment; however, the Tf-COF-adlayer-modified electrode exhibited 
higher FEH2 and lower FEC2 values than the Tp-COF counterpart at cur-
rent densities lower than 250 mA cm−2 (Fig. 3e and Supplementary  
Fig. 33). At 200 mA cm−2, FEH2 increased from 9% to 13%, whereas  
FEC2 decreased from 75% to 68%. The crystallinity and specific surface 
area of Tf-COF particles did not impact the catalytic performance 
(Supplementary Fig. 34). We attributed the higher FEC2 of the Tp-COF 
case to its carbonyl groups. This trend agrees with the density function 
theory (DFT) prediction that the Tp-COF adlayer absorbs K+ more 
strongly than Tf-COF (Supplementary Fig. 35). These sites could local-
ize K+ in the water layers near the Tp-COF surface, leading to a higher 
local K+ concentration in the vicinity of catalyst, as verified by depth-
profiling X-ray photoelectron spectroscopy analysis (Supplementary 
Fig. 36). We further investigated the impact of the local K+ concentra-
tion on CO2R by analysing the C–C coupling step towards C2 formation 
(that is, *CO + *CO → *OCCO; Supplementary Fig. 35). The DFT results 
indicate that a higher local K+ concentration promotes C–C coupling 
thermodynamically and kinetically, probably via the induced solvation 
effect and electrostatic field enhancement33,34, steering the CO2R 
towards C2 products.

To assess the role of the ordered PFSA hydrophobic domains, we 
employed Aemion—an anion exchange ionomer with hydrophilic back-
bones—as the control (Supplementary Fig. 37). The COF:Aemion-20wt% 
adlayer exhibited a proton-flux-constraining capability comparable 
with the COF:PFSA adlayer at 200 mA cm−2 (Supplementary Fig. 38). 
The Aemion ionomer decreases the concentration of K+ ions near the 
catalyst (H+/K+ flux ratio of ~14) due to Donnan exclusion. The structural 
cation centres on the ionomer can replace K+ for CO2 activation50. This 
adlayer-modified electrode exhibited a suppressed HER (FEH2 ≈ 15%) 
and considerable C2 formation (FEC2 ≈ 63%) at 200 mA cm−2 (Fig. 3f); 
however, the adlayer was quickly blistered and broken by the accumu-
lated gas due to the lack of gas-diffusion nanochannels, which limited 
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the catalytic stability to less than 1 h (Supplementary Fig. 39). At higher 
current densities (>200 mA cm−2), the hydrophilic adlayer cannot 
constrain the proton flux efficiently, as verified by the dominant HER 
(FEH2 > 70%). These results indicate the importance of the gas transport 
and proton-flux regulation enabled by the ordered hydrophobic 
domains within the COF:PFSA adlayer.

Energy efficiency and carbon efficiency towards C2 products
To assess the energy efficiency towards C2 products, we operated the 
COF:PFSA-adlayer-modified copper electrodes in a low-resistance slim 
flow-cell at moderate current densities of 100–300 mA cm−2 (Supple-
mentary Fig. 40). The CO2R product distribution was nearly identical 
to that obtained in the half-cell measurements. Within this regime, we 
achieved a CO2R FE of >85%, which is comparable with the selectivity 
of the literature benchmark neutral and alkaline-media CO2R 
systems8,10,51. The full-cell voltage was in the range of −3.2 to −3.9 V (with 
no compensation for solution resistance), and the derived EEC2 exhib-
ited a volcano trend with a maximum of 25% at −3.47 V with a C2 partial 
current density of 150 mA cm−2 (Fig. 4a). We operated the full-cell elec-
trolysis at this condition for an initial 10 h test (Supplementary Fig. 41). 
The FEC2 value was maintained at ~75% and the full-cell voltage at around 
−3.5 V, suggesting a stable EEC2 value of ~25% for C2 production in this 
system. This C2 energy efficiency represents a twofold improvement 
over the literature benchmark acidic CO2R system (Fig. 4b and  
Supplementary Table 2)19.

We assessed the capability of the COF:PFSA-modified PTFE–Cu 
electrode on SPCE by constraining the availability of CO2 (Fig. 4c). 
Upon reducing the flow rate of CO2 from 10 to 0.5 standard cubic cen-
timetres per minute (sccm), the SPCE increased from 6% to 75% for all 
CO2R products at 200 mA cm−2. The SPCE for C2 products was 45% at 
0.5 sccm, surpassing the theoretical limit of 25% in alkaline systems and 
comparable to the literature benchmark of 50% in acidic systems19,50.

Conclusion
The heterogeneous ionomer coating enables control of the catalyst 
microenvironment and thereby efficient C2 electrosynthesis in strongly 
acidic media. This strategy is applicable to other catalysts and current 
density regimes (Supplementary Fig. 42). The approach provides a 
route to achieve a kinetically favourable local environment for C–C cou-
pling without requiring high operating current densities and voltages. It 
thus offers a pathway to improve the energy efficiency and operational 
stability for CO2-to-C2 conversion in acidic media. We demonstrated C2 
production metrics (75% FE, 25% energy efficiency, and 20 h stability 
at 200 mA cm−2) that are competitive with the conventional alkaline 
and neutral CO2R flow-cell systems using standard copper catalysts. 
The CO2 single pass conversion achieved (45% towards C2 products) 
surpasses the fundamental limit of alkaline systems. This approach 
offers a solution to the challenge of reactant loss that has limited the 
field of CO2 electroreduction.

Methods
Chemicals and materials
The chemicals used for electrolytes and electrode preparation, includ-
ing phosphoric acid (85%), potassium chloride, potassium hydroxide, 
sulfuric acid (98%), PFSA (Aquivion, D79-25BS, EW = 760 g mol−1), PFSA 
(Nafion, EW = 1,100 g mol−1), copper nanoparticles (25 nm), carbon 
nanoparticles and nitrogen-containing polystyrene nanospheres 
(460 nm) were purchased from Sigma-Aldrich. The chemicals used 
for COF synthesis, including 1,3,5-triformylbenzene, 3,5-triformylphlo-
roglucinol, benzidine, pyrrolidine, ortho-dichlorobenzene, n-butyl 
alcohol, 1,3,5-benzenetriboronic acid, 1,4-dioxane, mesitylene and N,N-
dimethylformamide, were purchased from Energy Chemical. The non-
functionalized polystyrene microspheres (450 nm) were purchased 
from Alpha Nanotech. The anion-exchange ionomer powder (Aemion, 
AP1-CNN5-00-X) was purchased from Ionomr Innovations. The Nafion 

117 membrane and platinum mesh (grid aperture of 0.98 × 1.4 mm; 
purity 99.95%) were purchased from Fuel Cell Store. The PTFE gas 
diffusion layer (pore size = 450 nm) was purchased from the Beijing 
Zhongxingweiye Instrument Company. Deionized water (18.2 MΩ) was 
used for the preparation of all electrolytes.

Synthesis of COFs
Tp-COF and Tf-COF were prepared according to past reports, with 
modifications52–54. For the synthesis of Tp-COF52, Tp (84.1 mg), ben-
zidine (110.5 mg), pyrrolidine (Py, 0.5 ml), ortho-dichlorobenzene 
(o-DCB, 4.5 ml) and n-butyl alcohol (n-BuOH, 0.5 ml) were mixed in a 
pyrex tube (80 ml). The mixture was sonicated for 10 min, degassed 
through three freeze–pump–thaw cycles, sealed under vacuum and 
heated at 120 °C for 72 h. After cooling to room temperature, the pre-
cipitate was centrifuged, washed with tetrahydrofuran and dried in 
the vacuum oven at 60 °C overnight to obtain Tp-COF powders with 
high crystallinity. To synthesize Tp-COF with low crystallinity, the 
volume of Py, o-DCB and n-BuOH was changed to 0.1 ml, 2.5 ml and 
2.5 ml, respectively.

For the synthesis of Tf-COF53, Tf (64.8 mg), benzidine (110.5 mg), 
1,4-dioxane (2 ml) and mesitylene (2 ml) were mixed in a 25 ml pyrex 
tube. After sonication, acetic acid (0.4 ml, 6 M) was added into the tube. 
The same conditions were used to produce Tf-COF powders with high 
crystallinity. To synthesize poorly crystalline Tf-COF54, Tf (64.8 mg) 
and benzidine (110.5 mg) were dissolved into acetonitrile (50 ml) in a 
glass bottle. After adding acetic acid solution (4 ml, 12 M), the reactor 
was allowed to stand at room temperature for 72 h. The precipitate 
was collected, washed and dried to obtain Tf-COF powders with low 
crystallinity.

Characterization
Scanning electron microscopy imaging was performed using a scan-
ning electron microscope (FEI Quanta FEG 250). Transmission elec-
tron microscopy imaging and EDS analysis were performed on JEOL 
JEM-F200 and JEOL ARM-200F field-emission transmission electron 
microscopes operating at a 200 kV accelerating voltage, respectively. 
Contact angles were conducted using water droplets via Attension 
Theta (Biolin Scientific). X-ray diffraction data were collected on a D8 
Advance diffractometer in reflection geometry operating with a cop-
per Kα anode (λ = 1.54178 Å) at 40 kV and 40 mA, and with a slit width 
of 0.1 mm. X-ray photoelectron spectroscopy measurements were 
performed on a device (PHI 5700) with aluminium Kα X-ray energy 
source (1486.6 eV) for excitation. Nitrogen adsorption/desorption 
isotherm measurements at 77 K were performed with an ASAP 2020 
plus HD88 analyser, and the Brunauer–Emmett–Teller method and 
density functional theory pore model were used to calculate the spe-
cific surface areas and pore size distributions, respectively.

Electrode preparation
The bare PTFE–Cu electrodes were prepared by sputtering pure  
copper (>99.99%) onto PTFE substrates in the vacuum environment 
(~10−5–10−6 Torr) of an Angstrom Nexdep system. The deposition rate 
was kept constant at 1 Å s−1 and the thickness of copper catalyst layer 
was 200 nm. Adlayer-modified PTFE–Cu electrodes were prepared 
by spray-coating a nanoparticles/ionomers methanol dispersion 
(solid concentration of ~0.6 mg ml−1) onto the as-prepared PTFE–Cu 
substrates on a 50 °C hotplate. A proper mask was used to preserve 
the edge part of each PTFE–Cu substrate for electricity conducting 
(Supple mentary Fig. 3). Without specifications, the nominal loading of 
polymer nanoparticles (that is, PS, Tp-COF or Tf-COF) was 1.0 mg cm−2, 
and the weight ratio (wt%) of ionomers in the dispersion was 20%.

Flow-cell assembly
The flow-cell set-up consists of three compartments: the anolyte, 
catholyte and gas-flow chambers. The geometric area of the electrode 
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window was 1 × 1 cm2. The cathode was clamped between the catholyte 
and gas-flow chambers, with the catalyst side facing the catholyte. A 
platinum gauze was employed as the anode, and an Ag/AgCl electrode 
(3 M KCl, CHI instrument) was used as the reference electrode in catho-
lyte chamber. The catholyte and anolyte chambers were separated 
by a Nafion membrane. The catholyte and anolyte were circulated 
by peristaltic pumps at a constant rate of ~10 ml min−1. A digital mass 
flow controller (SmartTrack 100, Sierra) was used to control the CO2 
flow rate in the gas flow chamber. The CO2 and N2 gas cylinders were 
purchased from Linde Gas.

Full-cell measurements were performed in a slim flow-cell set-up 
with a configuration similar to the above-mentioned flow-cell. The 
three chambers were designed to ensure a proximity between the 
cathode and anode to minimize the Ohmic losses. When assembled, 
the distance between the cathode and anode electrode is ~1 mm. In 
the full-cell system, we paired CO2R cathode with an oxygen evolution 
reaction anode, that is, a titanium felt supported iridium oxide (IrOx–Ti)  
electrode. The mass loading of the IrOx catalyst was ~2.0 mg cm−2.

Electrochemical measurement
All of the electrochemical tests were performed using an electrochemi-
cal workstation (Autolab PGSTAT302N) connected to a current booster 
(Metrohm Autolab, 10 A). The catholytes of pH 0.7, 1.0, 1.3 or 1.9 were 
prepared by introducing a specific amount of KOH into 1 M phosphoric 
acid solution. The K+ concentration for each solution was adjusted  
to 3 M using KCl. The CO2R performance was tested in a flow-cell  
assembly under galvanostatic mode. The phosphate solution was  
used as catholyte, and 0.5 M sulfuric acid was used as anolyte. The 
PTFE–Cu or adlayer-modified PTFE–Cu electrode was used as the 
cathode. The volumes of catholyte and anolyte used for circulation 
were 20 ml. The current densities reported are based on geometric 
surface area.

CO2R product analysis
The gas products were collected from the gas outlet of the flow-cell and 
injected into a gas chromatograph (PerkinElmer Clarus 680) for gas 
quantification. The gas chromatograph was equipped with a thermal 
conductivity detector for the detection of H2, O2, N2 and CO signals and 
a flame ionization detector for the detection of CH4 and C2H4 signals. 
The gas chromatograph was composed of packed columns of molecular 
sieves (5 Å) and Carboxen-1000, and employed Argon (Linde, 99.999%) 
as the carrier gas. The liquid products were analysed using 1H NMR 
spectroscopy (600 MHz Agilent DD2 NMR Spectrometer) with water 
suppression. Dimethyl sulfoxide was used as the reference standard 
and deuterium oxide as the lock solvent. The FE was calculated using 
the equations:

FEgas =
z × F × v × r

j × Vm
andFEliquid =

z × F × nproduct

Q

where z is the number of electrons transferred, F is Faraday’s constant 
(96,485 C mol−1), v is the gas flow rate at the outlet of gas chamber 
(l min−1), r is the concentration of detected gas product in parts per 
million, j is the total current (A), Vm is the unit molar volume of gas 
(24.5 l mol−1), nproduct is the total moles of product derived from NMR 
analysis, and Q is the total charge (C).

The CO2 SPCE towards each product was determined using the 
following equation at 25 °C, 1 atm:

SPCE =
(jproduct × 60 s)/(n × F)

(v × 1min)/Vm

where jproduct is the partial current (A) of a specific CO2R product, and 
n is the electron transfer for the formation of each product molecule 
and Vm = 24.5 l mol−1.

The full-cell energy efficiency for each product was calculated 
as follows:

EEproduct =
(1.23 + (−E0product)) × FEproduct

−Ecell

where E0product is the thermodynamic potential for the formation of a 
specific CO2R product, FEproduct is the calculated FE of the product and 
Ecell is the full-cell voltage without Ohmic loss correction evaluated in 
the slim flow cell.

Ion permeation measurement
The ion fluxes passing through various adlayers were evaluated  
using a permeation flow-cell consisting of a permeate chamber,  
a catholyte chamber and an anolyte chamber, with a cross-sec-
tional chamber area of 1 × 1 cm2. Hydrophilic PTFE substrates with  
similar porosity to the hydrophobic ones were used to prepare vari-
ous adlayer-modified PTFE–Cu electrodes for the ion permeation  
tests. The hydrophilic PTFE–Cu/adlayer working electrodes were 
clamped between the permeate and catholyte chambers, with the 
adlayer-facing catholyte. A platinum gauze was used as the anode and 
an Ag/AgCl (3 M KCl) electrode was used as the reference electrode. 
The catholyte and anolyte chambers were separated by a piece of 
Nafion film.

Deionized water (30 ml), phosphate solution (containing 3 M 
KCl, pH ≈ 1.0) and 0.5 M H2SO4 were circulated at a constant rate of 
50 ml min−1 in the permeate, catholyte and anolyte chambers, respec-
tively. The deionized water in the permeate reservoir was purged  
with argon for 30 min to remove the oxygen inside. To drive ion  
migration, a cathodic current was applied to the working elec-
trode, in which only the water reduction reaction occurred 
(H2O + 2e– → H2 + 2OH–) on the surface of copper catalyst. Electrolysis 
was performed for 15 min, during which the pH value in the permeate 
reservoir was monitored by a calibrated pH meter. The K+ concentra-
tion in the permeate reservoir was analysed by inductively coupled 
plasma (ICP) after the reaction. The apparent H+ and K+ fluxes were 
calculated respectively:

Flux (H+) = (I × t)/(z × F) − V × 10pH−14

t × A and flux (K+) = c × V
t × A

where I is the current applied on the working electrode (A), t is the reac-
tion time (s), z is the number of electrons transferred for each OH− ion 
produced, V is the volume of deionized water in the permeate reservoir 
(l), A is the cross-sectional area of the permeation window (cm2), and c 
is the concentration of K+ measured by ICP (mol l–1).

Three-dimensional COMSOL simulation
The three-dimensional ion mass transport over the catalyst surface 
was modelled by COMSOL Multiphysics (v.5.5). The Secondary Current 
Distribution and Transport of Diluted Species physics interfaces were 
used to model the distribution and transport of H+, OH− and H2O near 
the electrode. To mimic the heterogeneous IPN:PFSA adlayer, a hexago-
nal close-packed nanosphere assembly was generated in SOLIDWORKS 
and input into COMSOL. The inverse-opal structure of this assembly 
represents the PFSA nanochannels among the IPN nanospheres. The 
species did not pass through the nanospheres. A 200-nm-thick catalyst 
layer was introduced at the bottom of the PFSA structure as cathode. A 
bulk concentration of 0.1 M H+ was set at the top boundary of the PFSA 
structure. A constant current density of 200 mA cm−2 was applied on  
the catalyst surface. A free tetrahedral mesh was used with a high 
element quality optimization. A mesh size of 0.05 to 0.2 µm with a 
maximum element growth rate of 1.35 and a curvature factor of 0.5 
were applied to the geometry. See the Supplementary Methods for 
more details.
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Data availability
All experimental data are available in the main text or the Supplemen-
tary Information. Source Data are provided with this paper.
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